, Volume 15, Issue 1, pp 97–110 | Cite as

Acute Toxicity, Uptake and Histopathology of Aqueous Methyl Mercury to Fathead Minnow Embryos

  • Edward W. DevlinEmail author


Early life stages of fishes have been shown to be especially susceptible to the toxic effects of heavy metal pollution. In this study, fathead minnow (Pimephales promelas) embryos were exposed in the laboratory to a graded series of aqueous methyl mercury concentrations under continuous-flow conditions. A number of toxicological endpoints were examined including; acute toxicity, bioaccumulation, protein production, impact on mitosis, gross and histopathology. Acute toxicity, reported as LC50 values of methyl mercury, ranged from 221 μg/l (95% C.I. 246–196 μg/l) for 24-h tests to 39 μg/l (95% C.I. 54–24 μg/l) for 96-h exposures. Fathead minnow embryos were shown to rapidly take up mercury from the surrounding water. Mercury levels in embryos reached levels of 2.80 μg/g wet weight after 96 h exposure to 40 μg/l methyl mercury. An initial elevation of total protein in embryo was observed in embryos exposed to 25 μg/l methyl mercury during the first 12 h of development. At later stages, significantly lower levels of protein/μg embryo were observed. Methyl mercury had no effect on mitotic stages (p=0.05) in early, cleaving blastula-stage embryos. Live embryos and serial sections were utilized to characterize changes in embryo morphology and histopathology.


methyl mercury embryo histology bioaccumulation 


  1. Agency for Toxic Substances and Disease Registry (ATSDR) (1999). Toxicological profile for mercury: TP-93/10. Centers for Disease Control. Atlanta, GeorgiaGoogle Scholar
  2. Benoit D.A., Puglisi F.A., Olson D.L., (1982). A fathead minnow Pimephales promelas early life stage toxicity test method evaluation and exposure to four organic chemicalsEnviron. Pollut. Ser. A 8(3):189–98CrossRefGoogle Scholar
  3. Bradford M., (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye bindingAnal. Biochem. 72:248–54CrossRefGoogle Scholar
  4. Brivio M.F., Bassi R., Cotelli F., (1991). Identification and characterization of the major components of the Oncorhynchrs mykiss egg chorionMol. Reprod. Dev. 28(1):85–93CrossRefGoogle Scholar
  5. Chan P.K., Cheng S.H., (2003). Cadmium-induced ectopic apoptosis in zebrafish embryosArch. Toxicol. 77(2):69–79Google Scholar
  6. Dave G., Xiu R., (1991). Toxicity of mercury, copper nickel, lead, and cobalt to embryos and larvae of zebrafishBrachydanio rerio. Arch. Environ. Contam. Toxicol. 21:126–34CrossRefGoogle Scholar
  7. Dennis I.F., Clair T.A., Rriscoll C.T.,Mamman N., Chalmers A., Shanley J., Norton S.A., Kahl S., (2005). Distribution patterns of mercury in lakes and rivers of northeastern North AmericaEcotoxicology. 14(1–20): 113–23CrossRefGoogle Scholar
  8. Devlin, E.W., Brammer, R.L., Puyear, R.L. and McKim, J.M. (1996). Prehatching development of the fathead minnow (Pimephales promelas Rafinesque), U.S. EPA publication EPA/600/R-96/079. 49 ppGoogle Scholar
  9. Devlin E.W., Mottet N.K., (1991). Acute toxicity, uptake and pathology of methyl mercury on rainbow trout embryosEnviron. Sci. 1(1):35–46Google Scholar
  10. Devlin E.W., Mottet N.K., (1992). Embryotoxic action of methylmercury on coho salmon embryos Bull. Environ. Contam. Toxicol. 49:449–54CrossRefGoogle Scholar
  11. Devlin E.W., Brammer J.D., Puyear R.L., (1982). Actue toxicity of toluene to three age groups of fathead minnows (Pimephales promelas)Bull. Environ. Contam. Toxicol. 29(1):7–12CrossRefGoogle Scholar
  12. Drevnick P.E., Sandheinrich M.B., (2003). Effects of dietary methylmercury on reproductive endocrinology of fathead minnowsEnviron. Sci. Technol. 37(19):4390–6CrossRefGoogle Scholar
  13. Fjeld E., Haugen T.O., Vollestad L.A., (1998). Permanent impairment in the feeding behavior of grayling (Thymallus thmallus) exposed to methylmercury during embryogenesis Sci. Total Environ. 213: 247–54CrossRefGoogle Scholar
  14. Girault L., Boudou A., Dufourc E.J., (1997). Methyl mercury interactions with phosolipid membranes as reported by fluorescence, 31P and 199Hg NMRBiochemica Biophys. Acta 1325:250–62 CrossRefGoogle Scholar
  15. Grippo M.A., Heath A.G., (2003). The effect of mercury on the feeding behavior of fathead minnows (Pimephales promelas)Ecotoxicol. Environ. Saf. 55(2):187–98CrossRefGoogle Scholar
  16. Hammerschmidt C.R., Sandheinrich M.B., Wiener J.G., Rada R.G., (2002). Effects of dietary methylmercury on reproduction of fathead minnowsEnviron. Sci. Technol. 36:877–83CrossRefGoogle Scholar
  17. Hammock D., Haung C.C., Mort G., Swinehart J.H., (2003). The effect of Humic Acid on the uptake of mercury(II), Cadmium(II), and zinc(II) by Chinook salmon (Oncorhynchus tshawytscha) eggsArch. Environ. Contam. Toxicol. 44:83–8CrossRefGoogle Scholar
  18. Heisinger J.F., Green W., (1975). Mercuric chloride uptake by eggs of the ricefish and resulting teratogenic effects Bull. Environ. Contam. Toxicol. 14(6):665–73CrossRefGoogle Scholar
  19. Hopkins W.A., Tatara C.P., Brant H.A., Jagoe C.H., (2003). Relationships between mercury body concentrations, standard metabolic rate, and body mass in eastern mosquitofish (Gambusia holbrooki) from three experimental populationsEnviron. Toxicol. Chem. 22(3):586–90 CrossRefGoogle Scholar
  20. Jewett S.C., Zhang X., Naidu A.S., Kelley J.J., Dasher D., Duffy L.K., (2003). Comparison of mercury and methyl mercury in northern pike and Artic grayling from western Alaska rivers Chemosphere 50:383–92CrossRefGoogle Scholar
  21. Johnson T.A., Bodaly R.A., Latif M.A., Fudge R.J.P., Strange N.E., (2001). Intra- and interpopulation variability in maternal transfer of mercury to eggs of walleye (Stizostedion vitreum)Aquat. Toxicol. 52:73–85CrossRefGoogle Scholar
  22. Kirubagaran R., Joy K.P., (1988). Toxic effects of three mecural compounds on survival, and histology of the kidney of the catfish Clarias batrachus (L.)Ecotox. Environ. Saf. 15:171–9CrossRefGoogle Scholar
  23. Krishnaja A.P., Rege M.S., (1982). Induction of chromosomal aberrations in fish Doleophthalmus dussumieri after exposure in vivo to mitomycin-C and heavy metals mercury, selenium and chromiumMut. Res. 102:71–82CrossRefGoogle Scholar
  24. Krishnani K.K., Azad I.S., Kailasam M., Thirunavukkarasu A.R., Gupta B.P., Joseph K.O., Muralidhar M., Abraham M., (2003). Acute toxicity of some heavy metals to Lates calcarifer fry with a note on its histopathological manifestationsJ. Environ. Sci. Health 38(4):645–55CrossRefGoogle Scholar
  25. Lajunen L.H., Kinnunen A., Yrjanheikki E., (1985). Determination of mercury in blood and fish samples by cold-vapor atomic absorption and direct current plasma emission spectrometryAt. Spectrosc. 6:49–52Google Scholar
  26. Latif M.A., Bodaly R.A., Johnson T.A., Fudge R.J., (2001). Effects of environmental and maternally derived methylmercury on the embryonic and larval stages of walleye (Stizostedion vitreum)Environ. Pollut. 111(1):139–48CrossRefGoogle Scholar
  27. Leaner J.J., Mason R.P., (2001). The effect of thiolate organic compounds on methylmercury accumulation and redistribution in sheepshead minnows, Cyprinodon variegates Environ. Toxicol. Chem. 20(7):1557–63CrossRefGoogle Scholar
  28. Matta M.B., Linse J., Cairncross C., Francendese L., Kocan R.M., (2001). Reproductive and transgenerational effects of methylmercury or Aroclor 1268 on Fundulus heteroclitus Environ. Toxicol. Chem. 20(2):327–35CrossRefGoogle Scholar
  29. McKim J.M., Olson G.F., Holcombe G.W., Hunt E.P., (1976). Long term effects of methylmercuric chloride on three generations of brook trout (Salvelinus fontinalis): toxicity, accumulation, distribution and elimination J. Fish. Res. Board Can. 33:2726–39Google Scholar
  30. Miura K., Himeno S., Koide N., Imura H., (2000). Effects of methylmercury and inorganic mercury on the growth of nerve fibers in cultured chick dorsal root ganglia Tohoku. J. Exp. Med. 192(3):195–10CrossRefGoogle Scholar
  31. National Research Council (NRC) (2000). Toxicological effects of methyl mercury. Committee on the Toxicological Effects of MethylmercuryBoard on Environmental Studies and Toxicology, Commission on Life Sciences, National Research Council. National Academy Press Wash. DC., 368 pp. ISBN 0-309-07140-2Google Scholar
  32. Olivieri C.E., Cooper K.R., (1997). Toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in embryos of the fathead minnow (Pimephales promelas)Chemosphere 34(5–7):1139–50CrossRefGoogle Scholar
  33. Perry D.M., Weis J.S., Weis P., (1988). Cytogenetic effects of methylmercury in embryos of the killifish, Fundulus heteroclitusArch. Environ. Contam. Toxicol. 17(5):569–74CrossRefGoogle Scholar
  34. Pickering Q.H., Lazorchak J.M., (1995). Evaluation of the robustness of the fathead minnow, Pimephales promelas, larval survival and growth test, U.S. EPA method 1000.0 Environ. Tox. Chem. 14(4):653–9CrossRefGoogle Scholar
  35. Post J.R., Vandenbos R., McQueen D.J., (1996). Uptake rates of food-chain and waterborne mercury by fish: field measurements, a mechanistic model, and assessment of uncertaintiesCan. J. Fish. Aquat. Sci. 53:395–407CrossRefGoogle Scholar
  36. Ribeiro C.A., Belger L., Pelletier E., Roulear C., (2002). Histopathological evidence of inorganic mercury and methyl mercury toxicity in the arctic charr (Salvelinus alpinus)Environ. Res. 90:217–25CrossRefGoogle Scholar
  37. Ribeiro C.A., Pellitier E., Pfeiffer W.C., Rouleau C., (2000). Comparative uptake, bioaccumulation and gill damages of inorganic mercury in tropical and nordic freshwater fish Environ. Res. A 83:286–92CrossRefGoogle Scholar
  38. Sakaizumi M., (1980). Effect of inorganic salts on mercury compound toxicity to the embryos of the medaka, Oryzias latipesJ. Fac. Sci. Univ. Tokyo Sec IV Zool. 14(4):369–84Google Scholar
  39. Samson J.C., Goodridge R., Olobatuyi R., Weis J.S., (2001). Delayed effects of embryonic exposure of zebrafish (Danio rerio) to methylmercury (MeHg)Aquat. Tox. 51:369–76CrossRefGoogle Scholar
  40. Samson J.C., Shenker J., (2000). The teratogenic effects of methylmercury on early development of the zebrafish, Danio rerioAquatic Toxicol. 48:343–54CrossRefGoogle Scholar
  41. Sanfeliu C., Sebastia J., Cristofol R., Rodriguez-Farre E., (2003). Neurotoxicity of organomercurial compoundsNeurotox. Res. 5(4):283–305CrossRefGoogle Scholar
  42. Sarafian T.A., Bredesen D.E., Verity M.A., (1996). Cellular Resistance to methylmercuryNeurotoxicology 17(1):27–36Google Scholar
  43. Satoh H., (2000). Occupational and environmental toxicology of mercury and its compoundsInd. Health 38(2):153–64CrossRefGoogle Scholar
  44. Sharp J.R., Neff J.M., (1982.) The toxicity of mercuric chloride and methylmercuric chloride to Fundulus heteroclitus embryos in relation to exposure conditionsEnv. Biol. Fish. 7(3):277–84CrossRefGoogle Scholar
  45. Sharp J.R., Neff J.M., (1980). Effect of the duration of exposure to mercuric chloride on the embryogenesis of the estuarine teleost, Fundulus heterclitus Mar. Environ. Res. 3:195–213CrossRefGoogle Scholar
  46. Shrivastava S., Rao K.S., Khanekar S., Pandya S.S., (1988). Determination of acute mercury toxicity to developing stage of Cyprinus carpio and Cirrhinus mrigalaFish. Tech. 25:29–31Google Scholar
  47. Sigel, A. and Sigel, A. (eds) (1997). Metal Ions in Biological Systems (34): Mercury and its Effects on Environment and Biology. New York: Marcel Dekker, Inc. 604 ppGoogle Scholar
  48. Snarski V.W., Olson G.F., (1982) Chronic toxicity and bioaccumulation of mercuric chloride in the fathead minnow (Pimephales promelas)Aquat. Sci. Toxicol. 2:143–56CrossRefGoogle Scholar
  49. Tchounwou P.B., Ayensu W.K., Ninashvili N., Sutton D., (2003). Environmental exposure to mercury and its toxicopathologic implications for public healthEnviron. Toxicol. 18(3):149–75CrossRefGoogle Scholar
  50. Thier R., Bonacker D., Stoiber T., Bohm K.J., Wang M., Unger E., Bolt H.M., Degen G., (2003). Interaction of metal salts with cytoskeletal motor protein systemsToxicol. Lett. 140–141:75–81CrossRefGoogle Scholar
  51. U.S. Environmental Protection Agency (2002). Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms. EPA−821-R−02–012 5. Wash DCGoogle Scholar
  52. U.S. Environmental Protection Agency (2001). Water quality criterion for the protection of human health: methylmercury. EPA−823-R−01-001Google Scholar
  53. Vogel D.G., Margolis R.L., Mottet N., (1985). The effects of methylmercury binding to microtubulesToxicol. Appl. Pharmacol. 80:473–86CrossRefGoogle Scholar
  54. Webster P.W., Canton J.H., (1991.) The usefulness of histopathology in aquatic toxicity -studiesComp. Biochem. Physiol. 100C:115–7Google Scholar
  55. Wester P.W., (1991). Histopathological effects of environmental pollutants beta-HCH and methyl mercury on reproductive organs of freshwater fishComp. Biochem. Physiol. C 100(1–2):237–9CrossRefGoogle Scholar
  56. Weis J.S., Weis P., (1977). Effects of heavy metals on development of the killifish, Fundulus heteroclitusJ. Fish. Biol. 11:49–54CrossRefGoogle Scholar
  57. Zhou T., Scali R., Weis J.S., (2001) Effects of methylmercury on ontogeny of prey capture ability and growth in three populations of larval Fundulus heteroclitusArch. Environ. Contam. Toxicol. 41(1):47–54CrossRefGoogle Scholar
  58. Zhou T., Wies P., Weis J.S., (1998) Mercury burden in two populations of Fundulus heteroclitus after sublethal methylmercury exposureAquatic Tox. 42:37–47CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Biology DepartmentHampden-Sydney CollegeHampden-SydneyUSA

Personalised recommendations