, Volume 15, Issue 2, pp 171–185 | Cite as

Perylene Toxicity in the Estuarine Environment of Ria de Aveiro (Portugal)

  • Ângela CunhaEmail author
  • Adelaide Almeida
  • Ana Ré
  • Aida Martins
  • Fernanda Alcântara


Perylene, a 5-ring polycyclic aromatic hydrocarbon is common in estuarine sediments and its toxicity in the benthic and planktonic compartments is not yet clarified. The objectives of this work were: (1) to follow the toxicity of high concentrations of perylene (110 mg l−1) on benthic bacteria and macrofauna (amphipod Corophium multisetosum); (2) to determine the effects of a low load of perylene (2 μg l−1) on the metabolism of suspended bacteriobenthos after 9-day exposure, mimicking the effects of tidal erosion; (3) to contrast the effects of this low perylene load on the particle-free bacterioplankton and on the suspended and particle-adhered bacteriobenthos. No impact was detected in bacterial abundance exposed to 110 mg perylene l−1 for 9 days. This concentration of perylene evoked no acute effects in C. multisetosum but, chronic toxicity assays revealed statistically significant negative effects on survival, growth and number of pregnant females. The bacterioplankton and the suspended bacteriobenthos, exposed to 2 μg perylene l−1 during 2 weeks, responded with altered profiles of activity when compared to the control suspension. These values ranged, respectively, for bacterial biomass production from 134 to 210 and from 24 to 184 μg C l−1 h−1, for aminopeptidase from 1824 to 11,127 and from 1464 to 15,488 nmol l−1 h−1, and for β-glucosidase from 87 to 400 and from 57 to 1278 nmol l−1 h−1. The rate of oxygen consumption in the perylene-exposed suspension (0.04–2.85 mmol O2 kg−1 dw sed h−1) exhibited a clearly distinct profile in relation to the control (0.57–1.60 mmol O2 kg−1 dw sed h−1). The overall reactivity of the bacteriobenthos to perylene was interpreted as the result of toxic pressure followed by evolution of a diverse bacterial community.


toxicity perylene Corophium multisetosum benthic and planktonic bacteria estuary 



This work was supported by Research Project EICOS, Praxis XXI 2/2.1/MAR/1750/95. We acknowledge the collaboration of J. L. Biscaya from Instituto Hidrográfico, Lisbon, for the determination of PAH concentration in native sediments.


  1. ASTM – American Society for Testing and Materials (1992). Standard guide for conducting 10-days static sediment toxicity tests with marine and estuarine amphipods. In: Annual Book of ASTM Standards, Water and Environmental Technology, Vol. 11.04, E1367-90. ASTM, PhiladelphiaGoogle Scholar
  2. Bjørnsen P.K., (1986). Automatic determination of biomass by image analysis Appl. Environ. Microbiol. 51:1199–204Google Scholar
  3. Budzinski H., Jones I., Bellocq J., Piérard C., Garrigues P., (1997). Evaluation of sediment contamination by polyaromatic hydrocarbons in the Gironde estuary Mar. Chem. 58:85–97CrossRefGoogle Scholar
  4. Carman K.R., Means J.C., Pomarico S.C., (1996). Response of sedimentary bacteria in a Louisiana salt marsh to contamination by diesel fuel Aquat. Microb. Ecol. 10:231–41CrossRefGoogle Scholar
  5. Coates J.D., Woodward J., Allen J., Philip P., Lovley D., (1997). Anaerobic degradation of polycyclic aromatic hydrocarbons and alkanes in petroleum-contaminated marine harbour sediments Appl. Environ. Microbiol. 63:3589–93Google Scholar
  6. DeWitt, T.H., Redmond, M.S., Sewall, J.E. and Swartz, R.C. (1992). Development of a chronic sediment toxicity test for marine benthic amphipods, Chesapeake Bay Program, EPA-N-240, Environmental Research Laboratory, Narrangansett, RIGoogle Scholar
  7. EPA Method 3550 1986 Sonication Extraction U. S. Environmental Protection Agency Washington, D.CGoogle Scholar
  8. EPA Method 610 1984 Polynuclear Aromatic Hydrocarbons U. S. Environmental Protection Agency Washington, D.CGoogle Scholar
  9. Garrigues P., Parlanti E., Lapouyade R., Bellocq J., (1988). Distribution of methylperylene isomers in selected sediments Geochim. Cosmochim. Acta 52:901–7CrossRefGoogle Scholar
  10. Hobbie J.E., Daley R., Jasper S., (1977). Use of Nuclepore filters for counting bacteria by fluorescence microscopy Appl. Environ. Microbiol. 33:1225–8Google Scholar
  11. Hoppe H.-G., (1993). Use of fluorogenic model substrates for extracellular enzyme activity (EEA) measurement of bacteria In: Kemp P.F., Sherr P.F., Sherr E.B., Cole J.J., (Eds). Handbook of Methods in Aquatic Microbial Ecology Lewis Publishers Boca Raton p. 423–31Google Scholar
  12. Kanaly R.A., Harayama S., (2000). Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria J. Bacteriol. 182:2059–67CrossRefGoogle Scholar
  13. LaFlamme R.E., Hites R.A., (1978). The global distribution of polycyclic aromatic hydrocarbons in recent sediments Geochim. Cosmochim. Acta 42:289–303CrossRefGoogle Scholar
  14. Langworthy D.E., Stapleton R.D., Sayler G.S., Findlay R.H., (1998). Genotypic and phenotypic responses of a riverine microbial community to polycyclic aromatic hydrocarbon contamination Appl. Environ. Microbiol. 64:3422–8Google Scholar
  15. Leahy J., Colwell R.R., (1990). Microbial degradation of hydrocarbons in the environment Microbiol. Rev. 54:305–15Google Scholar
  16. Lotufo G.R., Fleeger J.W., (1997). Effects of sediment-associated phenanthrene on survival, development and reproduction of two species of meiobenthic copepods Mar. Ecol. Prog. Ser. 151:91–102CrossRefGoogle Scholar
  17. Meyer-Reil L.-A., (1986). Measurement of hydrolytic activity and incorporation of dissolved organic substrates by microorganisms in marine sediments Mar. Ecol. Prog. Ser. 31:143–9CrossRefGoogle Scholar
  18. Novitsky J.A., (1987). Microbial growth rates and biomass production in a marine sediment; evidence for a very active but mostly nongrowing community Appl. Environ. Microbiol. 53:2368–72Google Scholar
  19. O’Riordan, J. (1993). Ambient Water Quality Criteria for Polycyclic Aromatic Hydrocarbons (PAHs). Ministry of Water, Land and Parks, Province of British Columbia, PO Box 9340 STN Prov Govt Victoria BC V8W 9M1Google Scholar
  20. Patching J., Raine R., (1983). Benthic metabolism and supply of organic material to the sea-bed In: MacDonald A.G., Priede I., (Eds) Experimental Biology at Sea Academic Press London pp. 347–63Google Scholar
  21. Pignatello J.J., King B., (1996). Mechanisms of slow sorption of organic chemicals to material particles Environ. Sci. Technol. 30:1–11CrossRefGoogle Scholar
  22. Ré, A. (1996). Estudo da utilização de Corophium multisetosum (Amphipoda: Corophiidae) na avaliação ecotoxicológica de sedimentos estuarinos e marinhos. M.Sc Thesis. University of Aveiro, PortugalGoogle Scholar
  23. Rodrigues A.M., Quintino V., (1985). Estudo granulométrico e cartografia dos sedimentos superficiais da Lagoa de Óbidos (Portugal) Comun. Serv. Geol. Portugal. 71:231–42Google Scholar
  24. Sanders M., (1995). Distribution of polycyclic aromatic hydrocarbons in oyster (Crassostera virginica) and surface sediment from two estuaries in South Carolina Arch. Environ. Contam. Toxicol. 28:397–405CrossRefGoogle Scholar
  25. Sanders M., Silvertsen S., Scott G., (2002). Origin and distribution of polycyclic aromatic hydrocarbons and toxicology Arch. Environ. Contam. Toxicol. 43:438–48CrossRefGoogle Scholar
  26. Shiaris M., (1989). Seasonal biotransformation of naphthalene, phenanthrene, and benzo[α]pyrene in surficial estuarine sediments Appl. Environ. Microbiol. 55:1391–9Google Scholar
  27. Shiaris M.P., Jambard-Sweet D., (1986). Polycyclic aromatic hydrocarbons in surficial sediments of Boston Harbour, Massachusetts, USA Mar. Pollut. Bull. 17:469–72CrossRefGoogle Scholar
  28. Simon M., Azam F., (1989). Protein content and protein synthesis rates of planktonic bacteria Mar. Ecol. Prog. Ser. 51:201–13CrossRefGoogle Scholar
  29. Verrhiest G.J., Clément B., Volat B., Montuelle B., Perrodin Y., (2002). Interactions between a polycyclic aromatic hydrocarbon mixture and the microbial communities in a natural freshwater sediment Chemosphere 46:187–96CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Ângela Cunha
    • 1
    Email author
  • Adelaide Almeida
    • 1
  • Ana Ré
    • 1
  • Aida Martins
    • 2
  • Fernanda Alcântara
    • 3
  1. 1.CESAM, Departamento BiologiaUniversidade de AveiroAveiroPortugal
  2. 2.Instituto Nacional Engenharia Tecnologia IndustrialLisboaPortugal
  3. 3.Departamento de BiologiaUniversidade de AveiroAveiroPortugal

Personalised recommendations