, Volume 15, Issue 1, pp 83–96 | Cite as

Contamination and Biomarkers in the Great Blue Heron, an Indicator of the State of the St. Lawrence River

  • Louise Champoux
  • Jean Rodrigue
  • Suzanne Trudeau
  • Monique H. Boily
  • Philip A. Spear
  • Alice Hontela


In 1996–1997, nine breeding colonies of the great blue heron on the St. Lawrence River and its estuary (Québec, Canada) were investigated in the framework of a biomonitoring program. Fledglings from colonies in freshwater were more contaminated with mercury, PCBs and many organic contaminants than those from estuarine colonies. The level of contamination in the St. Lawrence River is generally below the levels of toxicological effects for the great blue heron. The molar ratio of retinol: retinyl palmitate in heron eggs was correlated with total PCBs (r=0.79) and Mirex (r=0.90). In plasma, all biochemical parameters were significantly different between freshwater and marine colonies. Plasma retinol concentrations at the Dickerson and Hérons colonies were significantly lower compared with those at Grande Ile (p<0.05) and Steamboat (p<0.001). Based on retinoid and β-carotene concentrations in eggs, low plasma retinol was not associated with possible dietary deficiency. Plasma retinol was negatively correlated with many PCB congeners, total PCBs (r=−0.78), p,p′-DDE, trans-nonachlor and α-HCH. Similarly, the hormone T3 was correlated with many PCB congeners, total PCBs (r=−0.69) and the same organochlorine chemicals. Plasma LDH concentrations were different among freshwater colonies, Grande Ile and Hérons colonies having LDH values significantly greater than those of Steamboat (respectively, p<0.05 and p<0.01). Globally, the health status of the St. Lawrence great blue heron population was judged to be acceptable, however, several biomarkers indicated positive responses to contaminants.


contaminants vitamin A thyroid hormones great blue heron St. Lawrence River 



The authors acknowledge the contributions of S. Guay, P. Labonté, B. Jobin, P. Sylvain, A. Émery, J. Comtois, J. Rosa and G. Paquin for assistance in field work. We thank P. Pike and H. Lickers, from the Mohawk Council of Akwesasne, for their assistance in sampling at Dickerson Island. Chemical analyses were performed at the Canadian Wildlife Service National Wildlife Research Centre. The study was supported by the Canadian Wildlife Service of Environment Canada and the St. Lawrence Vision 2000 Action Plan.


  1. Bishop C.A., Mahony N.A., Trudeau S., Pettit K.E., (1999). Reproductive success and biochemical effects in Tree Swallows (Tachycineta bicolor) exposed to chlorinated hydrocarbon contaminants in wetlands of the Great Lakes and St. Lawrence River Basin, USA and Canada Environ. Toxicol. Chem. 18:263–71CrossRefGoogle Scholar
  2. Blus L.J., (1996). DDT, DDD, and DDE in birds In: W.N. Beyer, G.H. Heinz, A.W. Redmon-Norwood, (eds). Environmental Contaminants in Wildlife: Interpreting Tissue Concentrations SETAC special publication series CRC PressGoogle Scholar
  3. Boily M.H., Champoux L., Bourbonnais D.H., DesGranges J.-L., Rodrigue J., Spear P.A., (1994). β-Carotene and retinoids in eggs of great blue herons (Ardea herodias) in relation to St. Lawrence River contamination Ecotoxicology 3:271–86CrossRefGoogle Scholar
  4. Boily M.H., Ndayibagira A., Spear P.A., (2003a). Retinoids, LRAT and REH activities in eggs of Japanese quail following maternal and in ovo exposures to 3,3′,4,4′-tetrachlorobiphenyl Ecotoxicology 12:9–21CrossRefGoogle Scholar
  5. Boily M.H., Ndayibagira A., Spear P.A., (2003b). Retinoid metabolism (LRAT, REH) in the yolk-sac membrane of Japanese quail eggs and effects of mono-ortho-PCBs Comp. Biochem. Physiol. Part C. 134:11–23Google Scholar
  6. Brouwer A., Van den Berg K.J., (1986). Binding of a metabolite of 3,4,3′,4′-tetra chlorobiphenyl to transthyretin reduces serum vitamin A transport by inhibiting the formation of the protein complex carrying both retinol and thyroxin Toxicol. Appl. Pharmacol. 85:305–12CrossRefGoogle Scholar
  7. Brouwer A., Murk A.J., Koeman J.H., (1990). Biochemical and physiological approaches in ecotoxicology Funct. Ecol. 4:275–81CrossRefGoogle Scholar
  8. Champoux L., Rodrigue J., DesGranges J.-L., Trudeau S., Hontela A., Boily M., Spear P.A., (2002). Assessment of contamination and biomarker responses in two species of herons on the St.  River Environ. Monit. Assess. 79:193–215CrossRefGoogle Scholar
  9. Colborn, T. and Clement, C. (eds) (1992). Chemically induced alterations in sexual and functional development: the wildlife/human connection. Advances in Modern Environmental Toxicology, Vol. XX1, Princeton Priceton Scientific CoGoogle Scholar
  10. Colborn T., vom Saal F.S., Soto A.M., (1993). Developmental effects of endocrine-disrupting chemicals in wildlife and humans Environ. Health Perspect. 101:378–84CrossRefGoogle Scholar
  11. Custer T.W., Hines R.K., Melancon M.J., Hoffman D.J., Wickliffe J.K., Bickham J.W., Martin J.W., Henshel D.S., (1997). Contaminant concentrations and biomarker response in great blue heron eggs from 10 colonies on the upper Mississippi River, USA Environ. Toxicol. Chem. 16:260–71CrossRefGoogle Scholar
  12. DeGuise S., Martineau D., Béland P., Fournier M., (1995). Possible mechanisms of action of environmental contaminants on St. Lawrence beluga whales (Delphinapterus leucas) Environ. Health Perspect. 103(Suppl. 4):73–7CrossRefGoogle Scholar
  13. DesGranges J.-L., (1979). A Canadian program for surveillance of great blue heron (Ardea herodias) populations Proc. Colonial Waterbird Group 3:59–68Google Scholar
  14. DesGranges, J.-L. and Desrosiers, A. (2005). Breeding distribution and population trends of the Great Blue Heron in Québec (1977–2001): with special reference to the St. Lawrence River heronries. CWS occasional paper (in press)Google Scholar
  15. Desrosiers, A., Maisonneuve, C. and McNicoll, R. (1998). Inventaire des héronnières du Québec, été 1997. Ministère de L’Environnement et de la Faune, Direction de la faune et des habitats. 39 pGoogle Scholar
  16. Drouillard K.G., Fernie K.J., Smits J.E., Bortolotti G.R., Bird D.M., Norstrom R.J., (2001). Bioaccumulation and toxicokinetics of 42 polychlorinated biphenyl congeners in american kestrels (Falco sparverius) Environ. Toxicol. Chem. 20:2514–22CrossRefGoogle Scholar
  17. Dykstra C.R., Meyer M.W., Warnke D.K., Karasov W.H., Andersen D.E., Bowerman W.W., Giesy J.P., (1998). Low reproductive rates of Lake Superior bald eagles – low food delivery rates or environmental contaminants J. Great Lakes Res. 24:32–44Google Scholar
  18. Elliott J.E., Butler R.W., Norstrom R.J., Whitehead E., (1989). Environmental contaminants and reproductive success of great blue herons, Ardea herodias, in British Columbia, 1986–87 Environ. Pollut. 59:91–114CrossRefGoogle Scholar
  19. Elliott J.E., Norstrom R.J., Lorenzen A., Hart L.E., Philibert H., Kennedy S.W., Stegeman J.J., Bellward G.D., Cheng K.M., (1996). Biological effects of polychlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyls in bald eagle (Haliaeetus leucocephalus) chicks Environ. Toxicol. Chem. 15:782–93CrossRefGoogle Scholar
  20. Elliott J.E., Norstrom R.J., (1998). Chlorinated hydrocarbon contaminants and productivity of bald eagle populations on the Pacific coast of Canada Environ. Toxicol. Chem. 17:1142–53CrossRefGoogle Scholar
  21. Elliott J.E., Harris M.L., Wilson L.K., Whitehead P.E., Norstrom R.J., (2001a). Monitoring temporal and spatial trends in polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) in eggs of great blue heron (Ardea herodias) on the coast of British Columbia, Canada, 1983–1998 Ambio 30:416–28CrossRefGoogle Scholar
  22. Elliott J.E., Wilson L.K., Henny C.J., Trudeau S.F., Leighton F.A., Kennedy S.W., Cheng K.M., (2001b). Assessment of biological effects of chlorinated hydrocarbons in ospreys chicks Environ. Toxicol. Chem. 20:866–79CrossRefGoogle Scholar
  23. Fairbrother, A. (1993). Clinical biochemistry. In M.C. Fossi and C. Leonzio (eds). Nondestructive Biomarkers in Vertebrates, pp. 63–89. Lewis Publishers, CRC Press. Google Scholar
  24. Feeley M.M., (1995). Biomarkers for Great Lakes priority contaminants: halogenated aromatic hydrocarbons [Review] Environ. Health Perspect. 103(Suppl 9):7–16CrossRefGoogle Scholar
  25. Ferrando M.D., Andreu-Moliner E., (1991). Effect of lindane on the blood of a freshwater fish Bull. Environ. Contam. Toxicol. 47:465–70CrossRefGoogle Scholar
  26. Fossi, M.C. and Leonzio, C. (1993). Nondestructive Biomarkers in Vertebrates, 345 pp. Lewis Publishers, CRC Press. Google Scholar
  27. Fowler, M.E. (1986). Zoo and Wild Animal Medecine, 1127 pp. W.B. Saunders Company. Google Scholar
  28. Fox G.A., (1993). What have biomarkers told us about the effects of contaminants on the health of fish-eating birds in the Great Lakes? The theory and a literature review J. Great Lakes Res. 19:722–36CrossRefGoogle Scholar
  29. Gould J.C., Cooper K.R., Scanes C.G., (1999). Effects of polychlorinated biphenyls on thyroid hormones and liver type I monodeiodinase in the chick embryo Ecotoxicol. Environ. Saf. 43:195–203CrossRefGoogle Scholar
  30. Goutner V., Furness R.W., Papakostas G., (2001). Mercury in feathers of squacco heron (Ardeola ralloides) chicks in relation to age, hatching order, growth, and sampling dates Environ. Pollut. 111:107–15CrossRefGoogle Scholar
  31. Grasman K.A., Fox G.A., Scanlon P.F., Ludwig J.P., (1996). Organochlorine-associated immunosuppression in prefledgling caspian terns and herring gulls from the Great Lakes: an epidemiological study Environ. Health Perspect. 104:829–42CrossRefGoogle Scholar
  32. Grasman K.A., Scanlon P.F., Fox G.A., (1998). Reproductive and physiological effects of environmental contaminants in fish-eating birds of the Great Lakes - a review of historical trends Environ. Monit. Assess. 53:117–45CrossRefGoogle Scholar
  33. Hoffman, D.J., Rice, C.P. and Kubiak, T.J. (1996). PCBs and dioxins in birds. In W.N. Beyer, G.H. Heinz and A.W. Redmon-Norwood (eds). Environmental Contaminants in Wildlife: Interpreting Tissue Concentrations. SETAC special publication series, CRC PressGoogle Scholar
  34. Janz D.M., Bellward G.D., (1996). In ovo 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure in three avian species. 1. Effects on thyroid hormones and growth during the perinatal period Toxicol. Appl. Pharmacol. 139:281–91CrossRefGoogle Scholar
  35. Janz D.M., Bellward G.D., (1997). Effects of acute 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure on plasma thyroid and sex steroid hormone concentrations and estrogen receptor levels in adult great blue herons Environ. Toxicol. Chem. 16:985–9CrossRefGoogle Scholar
  36. Laporte P., (1982). Organochlorine residues and eggshell measurements of great blue heron eggs from Québec Colonial Waterbirds 5:95–103CrossRefGoogle Scholar
  37. Mes J., (1987). Polychlorobiphenyl in children’s blood Environ. Res. 44:213–20CrossRefGoogle Scholar
  38. Meyer M.W., Evers D.C., Hartigan J.J., Rasmussen P.S., (1998). Patterns of common loon (Gavia immer) mercury exposure, reproduction, and survival in Wisconsin, USA Environ. Toxicol. Chem. 17:184–90CrossRefGoogle Scholar
  39. Moore T., 1957. Vitamin A Elsevier London 645 ppGoogle Scholar
  40. Murk A.J., Bosveld A.T.C., Van den Berg M., Brouwer A., (1994). Effects of polyhalogenated aromatic hydrocarbons (PHAHs) on biochemical parameters in chicks of the common tern (Sterna hirundo) Aquat. Toxicol. 30:91–115CrossRefGoogle Scholar
  41. Murk A.J., Boudewijn T.J., Meininger P.L., Bosveld A.T.C., Rossaert G., Ysebaert T., Meire P., Dirksen S., (1996). Effects of polyhalogenated aromatic hydrocarbons and related contaminants on common tern reproduction: integration of biological, biochemical, and chemical data Arch. Environ. Contam. Toxicol. 31:128–40CrossRefGoogle Scholar
  42. Murvoll K.M., Skaare J.U., Nilssen V.H., Bech C., Ostnes J.E., Jenssen B.M., (1999). Yolk PCB and plasma retinol concentrations in shag (Phalacrocorax aristotelis) hatchlings Arch. Environ. Contam. Toxicol. 36:308–15CrossRefGoogle Scholar
  43. Neugebauer, E.A., Sans Cartier, G.L. and Wakeford, B.J. (2000). Methods For the Determination of Metals in Wildlife Tissues using Various Atomic Absorption Spectrophotometry Techniques. Technical Report Series No. 337E. Canadian Wildlife Service, Headquarters, Hull, Québec, CanadaGoogle Scholar
  44. Newman S.H., Piatt J.F., White J., (1997). Haematological and plasma biochemical reference ranges of Alaskan seabirds: their ecological significance and clinical importance Colonial Waterbirds 20:492–504CrossRefGoogle Scholar
  45. Peakall, D.B. (ed) (1992). Animal Biomarkers as Pollution Indicators. Ecotoxicology Series 1, 291 pp. Chapman & HallGoogle Scholar
  46. Peakall, D.B. and Shugart, L.R. (eds) (1993). Biomarkers Research and Application in the Assessment of Environmental Health. NATO ASI Series. Series H, Cell Biology, Vol. 68, 119 pp. Springer-VerlagGoogle Scholar
  47. Peakall D.B., Walker C.H., (1994). The role of biomarkers in environmental assessment. (3). Vertebrates Ecotoxicology 3:173–9CrossRefGoogle Scholar
  48. Polo F.J., Celdran J., Viscor G., Palomeque J., (1994). Blood chemistry of captive herons, egrets, spoonbill, ibis and gallinule Comp. Biochem. Physiol. 107A:343–7CrossRefGoogle Scholar
  49. Quinney T.E., (1982). Growth, diet, and mortality of nestling great blue herons Wilson Bull. 94:571–77Google Scholar
  50. Rodrigue, J., DesGranges, J.-L. and Champoux, L. (2005). Contamination du Grand Héron par les composés organochlorés et les métaux lourds au Québec (1989–1994). Série de rapports techniques no. 356, région du Québec, Service canadien de la fauneGoogle Scholar
  51. Rolland R.M., (2000). A review of chemically-induced alterations in thyroid and vitamin A status from field studies of wildlife and fish J. Wildl. Dis. 36:615–35Google Scholar
  52. SAS Institute (1999). JMP Statistical Discovery Software Cary, NC, USA SAS InstituteGoogle Scholar
  53. Sepuvelda M.S., Frederick P.C., Spalding M.G., Williams G.E., (1999). Mercury contamination in free-ranging great egret nestlings (Ardea albus) from southern Florida, USA Environ. Toxicol. Chem. 18:985–92CrossRefGoogle Scholar
  54. Spear P.A., Bourbonnais D.H., Peakall D.B., Moon T.W., (1989). Dove reproduction and retinoid (vitamin A) dynamics in adult females and their eggs following exposure to 3,3′,3,4′-tetrachlorobiphenyl Can. J. Zool. 67:908–13CrossRefGoogle Scholar
  55. Spear P.A., Bourbonnais D.H., Norstrom R.J., Moon T.W., (1990). Yolk retinoids (vitamin A) in eggs of the herring gull and correlations with polychlorinated dibenzo-p-dioxins and dibenzofurans Environ. Toxicol. Chem. 9:1053–61CrossRefGoogle Scholar
  56. Spear P.A., Bourbonnais D.H., (2000). Use of retinoids as biomarkers In: L. Lagadic, T. Caquet, J.-C. Amiard, F. Ramade, (eds). Use of Biomarkers for Environmental Quality Assesment Enfield Science Publishers p. 350Google Scholar
  57. Sporn M.B., Roberts A.B., Goodman D.S., (1994). The retinoids: Biology, Chemistry and Medicine 2 edition. Raven Press New York 679 ppGoogle Scholar
  58. Thomas C.M., Anthony R.G., (1999). Environmental contaminants in great blue herons (Ardea herodias) from the lower Columbia and Willamette Rivers, Oregon and Washington, USA Environ. Toxicol. Chem. 18:2804–16CrossRefGoogle Scholar
  59. Underwood B.A., (1984). Vitamin A in animal and human nutrition In: M.B. Sporn, A.B. Roberts, D.S. Goodman, (Eds). The Retinoids Vol 1 Academic Press, Montreal pp. 282–392Google Scholar
  60. Van den Berg M., Craane B.L.H.J., Sinnige T., van Mourok S., Dirksen S., Boudewijn T., Van der Gaag M., Lutke-Schipolt I.J., Spenkelink B., Brouwer A., (1994). Biochemical and toxic effects of polychlorinated biphenyls (PCBs), dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) in the cormorant (Phalacrocorax carbo) after in ovo exposure Environ. Toxicol. Chem. 13:803–16CrossRefGoogle Scholar
  61. Welch, L., (1994). Contaminant Burdens and Reproductive Rates of Bald Eagles Breeding in Maine. M.S. Thesis, Univ. Maine, Orono, MaineGoogle Scholar
  62. Wolfe M., Norman D., (1998). Effects of waterborne mercury on terrestrial wildlife at Clear Lake - Evaluation and testing of a predictive model Environ. Toxicol. Chem. 17:214–27CrossRefGoogle Scholar
  63. Won, H.T., Mulvihill, M.J. and Wakeford, B.J. (2001). Multiresidue Methods for the Determination of Chlorinated Pesticides and Polychlorinated Biphenyls (PCBs) in Wildlife Tissues by Gas Chromatography/Mass Spectrometry. Technical report series no. 355E. Canadian Wildlife Service, Headquarters, Hull, Québec, CanadaGoogle Scholar
  64. Zar J.H., (1984). Biostatistical Analysis, 2. Prentice-Hall Inc Englewood Cliffs, New-Jersey 718ppGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Louise Champoux
    • 1
  • Jean Rodrigue
    • 1
  • Suzanne Trudeau
    • 2
  • Monique H. Boily
    • 3
  • Philip A. Spear
    • 3
  • Alice Hontela
    • 4
  1. 1.Environment Canada, Canadian Wildlife ServiceSte-FoyCanada
  2. 2.Environment Canada, National Wildlife Research CentreOttawaCanada
  3. 3.Département des sciences biologiques et Centre TOXENUniversité du Québec à MontréalMontréalCanada
  4. 4.Department of Biological Sciences, Water Institute for Semi-arid Ecosystems (WISE)University of LethbridgeLethbridgeCanada

Personalised recommendations