Ecotoxicology

, Volume 14, Issue 8, pp 895–923

Case Study Part 2: Probabilistic Modelling of Long-term Effects of Pesticides on Individual Breeding Success in Birds and Mammals

  • W. ROELOFS
  • D.R. CROCKER
  • R.F. SHORE
  • D.R.J. MOORE
  • G.C. SMITH
  • H.R. AKCAKAYA
  • R.S. BENNETT
  • P.F. CHAPMAN
  • M. CLOOK
  • M. CRANE
  • I.C. DEWHURST
  • P.J. EDWARDS
  • A. FAIRBROTHER
  • S. FERSON
  • D. FISCHER
  • A.D.M. HART
  • M. HOLMES
  • M.J. HOOPER
  • M. LAVINE
  • A. LEOPOLD
  • R.  LUTTIK
  • P. MINEAU
  • S.R. MORTENSON
  • D.G. NOBLE
  • R.J. O’CONNOR
  • R.M. SIBLY
  • M. SPENDIFF
  • T.A. SPRINGER
  • H.M. THOMPSON
  • C. TOPPING
Article

Abstract

Long term exposure of skylarks to a fictitious insecticide and of wood mice to a fictitious fungicide were modelled probabilistically in a Monte Carlo simulation. Within the same simulation the consequences of exposure to pesticides on reproductive success were modelled using the toxicity–exposure-linking rules developed by R.S. Bennet et al. (2005) and the interspecies extrapolation factors suggested by R. Luttik et al. (2005). We built models to reflect a range of scenarios and as a result were able to show how exposure to pesticide might alter the number of individuals engaged in any given phase of the breeding cycle at any given time and predict the numbers of new adults at the season’s end.

Keywords

probabilistic risk assessment populations skylark wood mouse 

References

  1. Baillie, S.R., Crick, H.Q.P., Balmer, D.E., Beaven, L.P., Downie, I.S., Freeman, S.N., Leech, D.I., Marchant, J.H., Noble, D.G., Raven, M.J., Simpkin, A.P., Thewlis, R.M. and Wernham, C.V. (2002) Breeding Birds in the Wider Countryside: their conservation status 2001. BTO Research Report No. 278. BTO, Thetford. (http://www.bto.org/birdtrends2001/wcrskyla.htm) Google Scholar
  2. Bairlein F., (1999). Energy and nutrient utilization efficiencies in birds – a review In Adams N., Slotow R., (eds) Proceedings of the 22nd International Ornithological Congress Durban Birdlife, South AfricaGoogle Scholar
  3. Barrett G., (1969). Bioenergetics of a captive least shrewJournal of Mammalogy 50: 629–30Google Scholar
  4. Batzli G.O., Cole F.R., (1979). Nutritional ecology of microtine rodents: digestibility of forageJournal of Mammalogy 60: 740–50Google Scholar
  5. Bennett, R.S., Dewhurst, I., Fairbrother, A., Hart, A.D.M., Hooper, M., Leopold, A., Mineau, P., Mortensen, S., Shore, R.F., and Springer, T., (2005). A new interpretation of avian and mammalian reproduction toxicity test data in ecological risk assessment. Ecotoxicology, this volumeGoogle Scholar
  6. Blem C.R., (1975). Energetics of nestling house sparrows Passer domesticus. Comparative Biochemistry and Physiology 52A: 305–12Google Scholar
  7. Brisbin I.L., (1966). Energy-utilization in a captive hoary bat Journal of Mammalogy 47: 719–20Google Scholar
  8. Buckner C.H., (1964). Metabolism, food capacity and feeding behaviour in four species of shrews Canadian Journal of Zoology 42: 259–79Google Scholar
  9. Chamberlain D.E., Wilson A.M., Browne S.J., Vickery J.A., (1999). Effects of habitat type and management on the abundance of skylarks in the breeding seasonJournal of Applied Ecology 36: 856–70CrossRefGoogle Scholar
  10. Corbet G.B., Harris S., (1991). The Handbook of British Mammals. (Third). Blackwell Scientific PublicationsOxfordGoogle Scholar
  11. Corp N., Gorman M.L., Speakman J.R., (1999). Daily energy expenditure of free-living male Wood Mice in different habitats and seasonsFunctional Ecology 13: 585–93CrossRefGoogle Scholar
  12. Crocker, D.R. (2005). Estimating the exposure of birds and mammals to pesticides in long-term risk assessments. Ecotoxicology, this volumeGoogle Scholar
  13. Crocker, D.R., Hart, A., Gurney, J. and McCoy, C., (2002a). Project PN0908: Methods for estimating daily food intake of wild birds and mammals. Central Science Laboratory final report to DefraGoogle Scholar
  14. Crocker D.R., Prosser P., Irving P.V., Bone P., Hart A., (2002b). Estimating avian exposure to pesticides on arable crops In Boatman N.D., Carter N., Evans A.D., Grice P.V., Stoate C., Wilson J.D., (eds) Birds and Agriculture Association of Applied BiologistsWellesbourne pp. 237–44Google Scholar
  15. Decisioneering (2000). Crystal Ball. www.crystalball.comGoogle Scholar
  16. Donald P.F., (2004). The skylark Poyser LondonGoogle Scholar
  17. Donald, P.F., Buckingham, D.L., Muirhead, L.B., and Wilson, J.D. (2001) Factors affecting clutch size, hatching rates and partial brood losses in Skylark Alauda arvensis nests on lowland farmland. Donald, P.F. and Vickery, J.A. The ecology and conservation of skylarks Alauda arvensis breeding on lowland farmland, 63–77: 2001. Sandy, RSPBGoogle Scholar
  18. Donald P.F., Evans A.D., Muirhead L.B., Buckingham D.L., Kirby W.B., Schmitt S.I.A. 2002 Survival rates, causes of failure and productivity of Skylark Alauda arvenis nests on lowland farmland. Ibis 144 652–664Google Scholar
  19. Donald, P.F. and Vickery, J., (2001) The importance of cereal fields to breeding and wintering Skylarks Alauda arvensis in the UK. (Aebischer, N.J., Evans, A.D., Grice, P.V., Vickery, J. eds), Ecology and conservation of lowland farmland birds British Ornithologists’ Union, pp. 140–149Google Scholar
  20. Drozdz A., (1968). Digestibility and assimilation of natural foods in small rodentsActa Theriologica 13: 367–89Google Scholar
  21. Dunning J.B., (1992). CRC Handbook of Avian Body Masses CRC Press Boca RatonGoogle Scholar
  22. EPPO, (1993a). Decision-making scheme for the environmental risk assessment of plant protection products. Chapters 7, 9 & 11EPPO Bulletin 24: 1–87Google Scholar
  23. EPPO, (1993b). Decision-making scheme for the environmental risk assessment of plant protection products. Chapters 1–6, 8 & 10. EPPO Bulletin 24: 1–165Google Scholar
  24. European-Commission (2002). Guidance document on risk assessment for birds and mammals under council directive 91/414/EEC, SANCO/4145/2000. Google Scholar
  25. Ferson S., (2001). Estimating exposure over time: how not to do it In Hart A., (ed.) Probabilistic Risk Assessment for Pesticides in Europe: Implementation and Research Needs CLS York p. 75Google Scholar
  26. Ferson S., (2002). RAMAS Risk Calc 4.0 software: Risk assessment with uncertain numbersCRC Press Boca RatonGoogle Scholar
  27. Fischer, D. (2005). Accounting for differing exposure patterns between laboratory tests and the field in the assessment of long-term risks of pesticides to terrestrial vertebrates. Ecotoxicology, this volumeGoogle Scholar
  28. Flowerdew J.R., (1985). The population dynamics of wood mice and yellow-necked miceSymposium of the Zoological Society of London 55: 315–38Google Scholar
  29. Garthwaite D.G., Thomas M.R., Dawson A., Stoddart H., (2003). Pesticide Usage Survey Report 187: Arable Crops in Great Britain 2002Defra PublicationsLondonGoogle Scholar
  30. Golley F.B., (1960). Energy dynamics of a food chain of an old field communityEcological Monographs 30: 187–206Google Scholar
  31. Gorman M.L., Zubaid A.M.A., (1993). A comparative study of the ecology of woodmice Apodemus sylvaticus in two contrasting habitats: deciduous woodland and maritime sand-dunesJournal of Zoology (London) 229: 385–96CrossRefGoogle Scholar
  32. Green R.E., (1978). Factors affecting the diet of farmland skylarks Alauda arvensisJournal of Animal Ecology 47: 913–28Google Scholar
  33. Hansson L., (1971). Small rodent food, feeding and population dynamics. A comparison between granivorous and herbivorous species in ScandanaviaOikos 22: 183–9Google Scholar
  34. Hart, A.D.M., and Thompson, H.M. (2005). Improved approaches to assessing long term risks to birds and mammals. Ecotoxicology, this volumeGoogle Scholar
  35. Hawkings A.E., Jewell P.A., (1962). Food consumption and energy requirements of capitive British shrews and the moleProceedings of the Zoological Society of London 138: 137–55CrossRefGoogle Scholar
  36. Jenny M., (1990). Populations dynamic der Feldlerche Alauda arvensis in einer intensiv genutzten Agarlandschaft des schwiezerischen MittelandesDer Ornithologische Beobachter 87: 153–63Google Scholar
  37. Jenny M., Weibel U.M., (2001). Is the temporal distribution of skylark Alauda arvensis nesting attempts a measure of habitat quality and breeding success. A comparison of different natural and agricultural habitats In Donald P.F., Vickery J.A., (eds) The ecology and conservation of skylarks Alauda arvensis RSPB SandyGoogle Scholar
  38. Jepsen, J.U., Topping, C.J., Odderskær, P. and Andersen, P.N., (2004). Evaluating consequences of land-use strategies on wildlife populations using multiple species predictive scenarios. Agriculture Ecosystems & Environment In press, Google Scholar
  39. Luttik, R., Mineau, P. and Roelofs, W. (2005). A review of interspecies toxicity extrapolation in birds and mammals and a proposal for long-term toxicity data. Ecotoxicology, this volumeGoogle Scholar
  40. Mineau, P. (2005). A review and analysis of study endpoints relevant to the assessment of ‘long term’ pesticide toxicity in avian and mammalian wildlife. Ecotoxicology, this volumeGoogle Scholar
  41. Mineau P., Hooper M., Elmegaard N., Grau R., Luttik R., Ringer B., (2001). Case Study 5: Foliar Insecticide II In Hart A.D.M., Balluff D., Barfknecht R., Chapman P.F., Hawkes T., Joermann G., Leopold A., Luttik R., (eds) Avian effects assessment: a framework for contaminants studies Society of Environmental Toxicology and Chemistry (SETAC) Pensacola, FL. pp. 113–36Google Scholar
  42. Rogers L.M., Gorman M.L., (1995). The diet of the wood mouse Apodemus sylvaticus on set-aside landJournal of Zoology 235: 77–83Google Scholar
  43. Sawicka-Kapusta K., Dobrotecka M., Drozdz A., Tertil R., (1975). Bioenergetic parameters of experimental groups of common voles (Microtus arvalis) Ekologia Polska 23: 347–65Google Scholar
  44. Shore, R.F., Crocker, D.R., Akcakaya, H.R., Bennett, R.S., Chapman, P.F., Clook, M., Crane, M., Dewhurst, I.C., Edwards, P.J., Fairbrother, A., Ferson, S., Fischer, D., Hart, A.D.M., Holmes, M., Hooper, M.J., Lavine, M., Leopold, A., Luttik, R., Mineau, P., Moore, D.R.J., Mortenson, S.R., Noble, D.G., O’Connor, R.J., Roelofs, W., Sibly, R.M., Smith, G., Spendiff, M., Springer, T.A., Thompson, H.M. and Topping, C. (2005). Case Study Part 1: How to Calculate Appropriate Deterministic Long-term Toxicity to Exposure Ratios (TERs) for Birds and Mammals. Ecotoxicology, this volumeGoogle Scholar
  45. Sibly, R.M., Akcakaya, H.R., Topping, C.J., and O’Connor, R.J.(2005). Population-level assessment of risks of pesticides to birds and mammals in the UK. Ecotoxicology, this volumeGoogle Scholar
  46. Topping C.J., Hansen T.S., Jensen T.S., Jepsen J.U., Nikolajsen F., Odderskær P., (2003). ALMaSS, an agent-based model for animals in temperate European landscapes Ecological Modelling 167: 65–82CrossRefGoogle Scholar
  47. Topping C.J., Odderskær P., (2004). Modelling the influence of temporal and spatial factors on the assessment of impacts of pesticides on skylarksEnvironmental Toxicology & Chemistry 23: 509–20Google Scholar
  48. Topping, C.J., Sibly, R.M., Akcakaya, H.R., Smith, G.C. and Crocker, D.R., (2005) Risk assessment of UK skylark populations using life-history and individual-based landscape models. Ecotoxicology, this volumeGoogle Scholar
  49. Watts C.H.S., (1968). The foods eaten by wood mice (Apodemus sylvaticus) and bank voles (Clethrionomys glareolus) in Wytham Woods, BerkshireJournal of Animal Ecology 37: 25–41Google Scholar
  50. Willis G.H., McDowell L.L., (1987). Pesticide persistence on foliageReviews of Environmental Contamination and Ecotoxicology 100: 23–73Google Scholar
  51. Wilson J.D., Evans J., Browne S.J., King J.R., (1997). Territory distribution and breeding success of skylarks Alauda arvensis on organic and intensive farms in southern EnglandJournal of Applied Ecology 34: 1462–78Google Scholar
  52. Wolfenden H., Peach W.J., (2001). Temporal changes in the survival rates of skylarks Alauda arvensis breeding in duneland in northwest England. In Donald P.F., Vickery J., (eds) The ecology and conservation of skylarks Alauda arvensis. RSPB Sandy pp. 79–89Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • W. ROELOFS
    • 1
  • D.R. CROCKER
    • 1
  • R.F. SHORE
    • 2
  • D.R.J. MOORE
    • 3
  • G.C. SMITH
    • 1
  • H.R. AKCAKAYA
    • 4
  • R.S. BENNETT
    • 5
  • P.F. CHAPMAN
    • 6
  • M. CLOOK
    • 7
  • M. CRANE
    • 8
  • I.C. DEWHURST
    • 7
  • P.J. EDWARDS
    • 6
  • A. FAIRBROTHER
    • 9
  • S. FERSON
    • 4
  • D. FISCHER
    • 10
  • A.D.M. HART
    • 1
  • M. HOLMES
    • 1
  • M.J. HOOPER
    • 11
  • M. LAVINE
    • 12
  • A. LEOPOLD
    • 13
  • R.  LUTTIK
    • 14
  • P. MINEAU
    • 15
  • S.R. MORTENSON
    • 16
  • D.G. NOBLE
    • 17
  • R.J. O’CONNOR
    • 18
  • R.M. SIBLY
    • 19
  • M. SPENDIFF
    • 20
  • T.A. SPRINGER
    • 21
  • H.M. THOMPSON
    • 1
  • C. TOPPING
    • 22
  1. 1.Central Science LaboratorySand HuttonYorkUK
  2. 2.Centre for Ecology & HydrologyMonks WoodUK
  3. 3.Ecological Risk Assessment Group, Cadmus GroupOttawaCanada
  4. 4.Applied BiomathematicsSetauketUSA
  5. 5.U.S. Environmental Protection Agency, Office of Research and DevelopmentDuluthUSA
  6. 6.Jealotts Hill International Research StationBracknellUK
  7. 7.Pesticides Safety DirectorateYorkUK
  8. 8.Crane ConsultantsFaringdonUK
  9. 9.USEPA/NHEERL/WED, CorvallisUSA
  10. 10.Bayer Corp, Research & DevelopmentStilwellUSA
  11. 11.Texas Tech UniversityLubbockUSA
  12. 12.Duke University, ISDSDurhamUSA
  13. 13.Wildlife InternationalWarnveldThe Netherlands
  14. 14.RIVM, CSRUtrechtThe Netherlands
  15. 15.Canadian Wildlife Service, National Wildlife Research CentreOttawaCanada
  16. 16.Syngenta Crop Protection, Inc.GreensboroUSA
  17. 17.British Trust for OrnithologyThetfordUK
  18. 18.Wildlife EcologyUniversity of Maine, OronoUSA
  19. 19.University of ReadingWhiteknightsUK
  20. 20.Health and Safety Laboratory Broad LaneUK
  21. 21.Wildlife InternationalEastonUSA
  22. 22.EcoSolRøndeDenmark

Personalised recommendations