Ecotoxicology

, Volume 14, Issue 7, pp 741–755 | Cite as

A Test Battery Approach for the Ecotoxicological Evaluation of Estuarine Sediments

  • M. Davoren
  • S. Ní Shúilleabháin
  • J.O’ Halloran
  • M.G.J. Hartl
  • D.  Sheehan
  • N.M. O’Brien
  • F.N.A.M. van Pelt
  • C. Mothersill
Article

Abstract

The purpose of this study was to evaluate the overall sensitivity and applicability of a number of bioassays representing multiple trophic levels, for the preliminary ecotoxicological screening (Tier I) of estuarine sediments. Chemical analyses were conducted on sediments from all sampling sites to assist in interpreting results. As sediment is an inherently complex, heterogeneous geological matrix, the toxicity associated with different exposure routes (solid, porewater and elutriate phases) was also assessed. A stimulatory response was detected following exposure of some sediment phases to both the Microtox® and algal bioassays. Of the bioassays and endpoints employed in this study, the algal test was the most responsive to both elutriates and porewaters. Salinity controls, which corresponded to the salinity of the neat porewater samples, were found to have significant effects on the growth of the algae. To our knowledge, this is the first report of the inclusion of a salinity control in algal toxicity tests, the results of which emphasise the importance of incorporating appropriate controls in experimental design. While differential responses were observed, the site characterised as the most polluted on the basis of chemical analysis was consistently ranked the most toxic with all test species and all test phases. In terms of identifying appropriate Tier I screening tests for sediments, this study demonstrated both the Microtox® and algal bioassays to be more sensitive than the bacterial enzyme assays and the invertebrate lethality assay employing Artemia salina. The findings of this study highlight that salinity effects and geophysical properties need to be taken into account when interpreting the results of the bioassays.

Keywords

sediment elutriate porewater Microtox® Skeletonema costatum hormesis 

References

  1. Ahlf, W., Hollert, H., Neumann-Hensel H. and Ricking M. (2002). A guidance for the assessment and evaluation of sediment quality: A German approach based on ecotoxicological and chemical measurements. J. Soils & Sediments (online first) http://dx.dol.org/10.1065/jss2002.02.35 6ppGoogle Scholar
  2. Ankley G.T., Schubauer-Berigan M.K. Dierkes J.R., 1991. Predicting the toxicity of bulk sediment to aquatic organisms with aqueous test fractions: porewater vs. eluriate Environ. Toxicol Chem. 10:1359–66CrossRefGoogle Scholar
  3. Ankley G.T., Hoke R.A., Giesy J.P., Winger P.V., 1989. Evaluation of the toxicity of marine sediments and dredge spoils with the Microtox® bioassay Chemosphere 18(9/10):2069–75CrossRefGoogle Scholar
  4. ASTM 1994 Standard Guide for designing biological tests with sediments (E1525–94) American Society for Testing and Materials PhiladelphiaGoogle Scholar
  5. Azur Environmental Ltd 1998. Microtox® acute toxicity basic test procedures Carlsbad CAGoogle Scholar
  6. Benton M.J., Malott M.L., Knight S.S., Cooper C.M., Benson W.H., 1995. Influence of sediment composition on apparent toxicity in a solid-phase test using bioluminescent bacteria Environ. Toxicol. Chem. 14:411–4CrossRefGoogle Scholar
  7. Bitton G., Campbell M., Koopman B., 1992. MetPAD – A bioassay kit for the specific determination of heavy-metal toxicity in sediments from hazardous waste sites Environ. Toxicol. Wat. Qual. 7:323–8CrossRefGoogle Scholar
  8. Bombardier M., Bermingham N., 1999. The SED–TOX index: toxicity-directed management tool to assess and rank sediments based on their hazard – Concept and application Environ. Toxicol. Chem. 18(4):685–98CrossRefGoogle Scholar
  9. BS EN ISO 10253 1998. Water quality – Marine algal growth inhibition test with Skeletonema costatum and Phaeodactylum tricornutum The British Standards Institute LondonGoogle Scholar
  10. Byrne P.A., O’ Halloran J., 2000. Acute and sublethal toxicity of estuarine sediments to the manila clam, Tapes semidecussatus Environ. Toxicol. 15:456–68CrossRefGoogle Scholar
  11. Calabrese E.J., 2004. Hormesis: from marginalization to mainstream. A case for hormesis as the default dose-response model in risk assessment Toxicol. Appl. Pharmacol. 197:125–36CrossRefPubMedGoogle Scholar
  12. Calabrese E.J., Baldwin L.A., 2003. Hormesis: the dose-response revolution Ann. Rev. Pharmacol. Toxicol. 43:175–97CrossRefGoogle Scholar
  13. Carr R.S., Chapman D.C., 1992. Comparison of solid phase and porewater approaches for assessing the quality of marine and estuarine sediments Chem. Ecol. 7:19–30CrossRefGoogle Scholar
  14. Carr R.S., Williams J.W., Fragata C.T.B., 1989. Development and evaluation of a novel marine sediment porewater toxicity test with the polychaete Dinophilus gyrociliatus Environ. Toxicol. Chem. 8:533–43CrossRefGoogle Scholar
  15. Carr R.S., 1998. Marine and estuarine porewater toxicity testing In: Wells P.G., Lee K., Blaise C., (eds.) Microscale Testing in Aquatic Toxicology: Advances, Techniques, and Practice CRC Press Boca Raton, Fl, USA pp. 523–38Google Scholar
  16. Chapman P.M., Ho K.T., Munns W.R., Jr., Soloman K., Weinstein M.P., 2002. Issues in sediment toxicity and ecological risk assessment Mar. Pollut. Bull. 44:271–8CrossRefPubMedGoogle Scholar
  17. Chapman P.M., Wang F., 2001. Assessing sediment contamination in estuaries Environ. Toxicol. Chem. 20(1):3–22CrossRefPubMedGoogle Scholar
  18. Cheung Y.H., Neller A., Chu K.H., Tam N.F.Y., Wong C.K, Wong Y.S., Wong M.H., 1997. Assessment of sediment toxicity using different trophic organisms Arch. Environ. Toxicol. Chem. 32:260–67CrossRefGoogle Scholar
  19. Christofi N., Hoffmann C., Tosh L., 2002. Hormesis responses of free and immobilized light-emitting bacteria. Ecotoxicol. Environ. Saf. 52:227–31CrossRefPubMedGoogle Scholar
  20. Cleveland L., Little E.E., Petty J.D., Johnson B.T., Lebo J.A., Orazio C.E., Dionne J., Crockett A., 1997. Toxicological and chemical screening of Antarctica sediments: use of whole sediment toxicity tests, Microtox®, Mutatox® and semipermeable membrane devices (SMPDs) Mar. Pollut. Bull. 34:194–202CrossRefGoogle Scholar
  21. Cook S.V., Chu A., Goodman R.H., 2000. Influence of salinity on Vibrio fischeri and lux-modified Pseudomonas fluorescens toxicity bioassays Environ. Toxicol. Chem. 19(10):474–7CrossRefGoogle Scholar
  22. Coughlan B.M., Hartl M.G.J., Sheehan D., Mothersill C., van Pelt F.N.A.M., O’ Halloran J., O’Brien N.M., 2002. Detecting genotoxicity using the Comet assay following chronic exposure of manila clam Tapes semidecussatus to polluted estuarine sediments Mar. Pollut. Bull. 44(12):1359–65CrossRefPubMedGoogle Scholar
  23. Day K.E., Dutka B.J., Kwan K.K., Batista N., Reynoldson T.B., Metcalf-Smith J.L., 1995. Correlations between solid-phase microbial screening assays, whole-sediment toxicity tests with macroinvertebrates and in situ benthic community structure J. Great Lakes Res. 21:192–206CrossRefGoogle Scholar
  24. Doherty F.G., 2001. A review of the Microtox® toxicity test system for assessing the toxicity of sediments and soils Wat. Qual. Res. J. Can. 36(30):465–518Google Scholar
  25. Dombroski E., Gaudet I.D., Zack Florence L., Qureshi A.A., 1996. A comparison of techniques used to extract solid samples prior to acute toxicity analysis using the Microtox® test Environ. Toxicol. Wat. Qual. 11:121–8CrossRefGoogle Scholar
  26. Dutka B.J., Tuominen T., Churchland L., Kwan K.K., 1989. Fraser river sediments and waters evaluated by the battery of screening tests and techniques Hydrobiologia 188/189:301–5Google Scholar
  27. Ghirardini A.V., Birkemeyer T., Novelli A.A., Delaney E., Pavoni B., Ghetti P.F., 1999. An integrated approach to sediment quality assessment: the Venetian lagoon as a case study Aquat. Ecosys. Health Manage. 2:435–47CrossRefGoogle Scholar
  28. Giesy J.P., Hoke R.A., 1989. Fresh-water sediment toxicity bioassessment – Rationale for species selection and test design J. Great Lakes Res. 15:539–69Google Scholar
  29. Guillard R.R.L., Ryther J.H., 1962. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervaceae Cleve. Can J. Microbiol. 8:229–39PubMedGoogle Scholar
  30. Harris, J.R.W. and Cleary J.J. (1987). Particle–water partitioning and organotin dispersal in an estuary. In Organotin Symposium Oceans ’86, pp.1370–1374. Washington D.C.: Institute of Electrical and Electronic EngineersGoogle Scholar
  31. Hartl M.G.J., Coughlan B.M., Sheehan D., van Pelt F.N.A.M., Heffron J.J.A., O’ Reilly S.J., O’ Halloran J., O’ Brien N.M., 2004. Implications of seasonal priming and reproductive activity on the interpretation of Comet assay data derived from the clam Tapes semidecussatus Reeves 1864, exposed to contaminated sediments Mar. Environ. Res. 57:295–310CrossRefPubMedGoogle Scholar
  32. Keely J.E., Engler R.M., 1974 Dredged material research program. Miscellaneous Paper D-74-14 US, Army Engineer Waterways Experiment Station Vicksburg, MississippiGoogle Scholar
  33. Kilemade M., Hartl M.G.J., Sheehan D., Mothersill C., van Pelt F.N.A.M., O’ Brien N.M., O’ Halloran J., 2004. An assessment of the pollutant status of surficial sediment in Cork Harbour in the South East of Ireland with particular reference to polycyclic aromatic hydrocarbons Mar. Pollut. Bull. 49:1084–96CrossRefPubMedGoogle Scholar
  34. Kwan K.K., 1995. Direct sediment toxicity testing procedure using sediment chromotest kit Environ. Toxicol. Wat. Qual. 9:193–6CrossRefGoogle Scholar
  35. Kwan K.K., Dutka B.J., 1995. Comparative assessment of two solid-phase toxicity bioassays: the direct sediment toxicity testing procedure (DSTTP) and the Microtox® solid-phase test (SPT) Bull. Environ. Contam. Toxicol. 55:338–46CrossRefPubMedGoogle Scholar
  36. Laima M.J.C., 1992. Evaluation of the indophenol method to measure NH4+in extracts from coastal marine sediments Mar. Chem. 39:283–96CrossRefGoogle Scholar
  37. Lee K., Nagler J.J., Fournier M., Lebeuf M., Cyr D.G., 1999. Toxicological characterisation of sediments from Baie des Anglais on the St. Lawrence estuary Chemosphere 39:1019–35CrossRefPubMedGoogle Scholar
  38. Loring D.H., Rantala R.T.T., 1992. Manual for the geochemical analyses of marine sediments and suspended particulate matter Earth Sci. Rev. 32:235–83CrossRefGoogle Scholar
  39. Marine Institute 1999. Ireland’s marine and coastal areas and adjacent seas: an environmental assessment Department of the Marine and Natural Resources Dublin, IrelandGoogle Scholar
  40. Matthiessen P., Bifield S., Jarrett F., Kirby M.F., Law R.J., McWinn W.R., Sheahan D.A., Thain J.E., Whale G.R., 1998. An assessment of sediment toxicity in the River Tyne Estuary, U.K. by means of bioassays Mar. Environ. Res. 45:1–15CrossRefGoogle Scholar
  41. McKinney E.S.A., Gibson C.E., Stewart B.M., 1997. Planktonic diatoms in the North-West Irish Sea: a study by automatic sampler Biology and Environment: Proc. R. Ir. Acad. 97B(3):197–202Google Scholar
  42. Nendza M., 2002. Inventory of marine biotest methods for the evaluation of dredged material and sediments Chemosphere 48:865–83CrossRefPubMedGoogle Scholar
  43. Nipper M., Carr R.S., Biedenbach J.M., Hooten R.L., Miller K., 2002. Toxicological and chemical assessment of ordnance compounds in marine sediments and porewaters Mar. Pollut. Bull 44:789–806CrossRefPubMedGoogle Scholar
  44. Onorati F., Mecozzi M., 2004. Effects of two diluents in the Microtox® toxicity bioassay with marine sediments Chemosphere 54:679–87CrossRefPubMedGoogle Scholar
  45. Pederson F., Bjørnestad E., Andersen H.V., Kjølholt J., Poll C., 1998. Characterisation of sediments from Copenhagen harbour by use of biotests Wat. Sci. Technol. 37:233–40CrossRefGoogle Scholar
  46. Persoone G., Van de Vel A., Van Steertegem M., De Nayer B., 1989. Predictive value of laboratory tests with aquatic invertebrates: influence of experimental conditions Aquat. Toxicol. 14:149–66CrossRefGoogle Scholar
  47. Pun K.C., Cheung R.Y.H., Wong M.H., 1995. Characterisation of sewage sludge and toxicity evaluation with microalgae Mar. Pollut. Bull. 31(4–12): 394–401CrossRefGoogle Scholar
  48. Ragnarsdottir K.V., 2000. Environmental fate and toxicology of organophosphate pesticides J. Geol. Soc. 157:859–76CrossRefGoogle Scholar
  49. Ringwood A.H., DeLorenzo M.E., Ross P.E., Holland A.F., 1997. Interpretation of Microtox® solid-phase toxicity tests: the effects of sediment composition Environ. Toxicol. Chem. 16(6):1135–40CrossRefGoogle Scholar
  50. Stebbing A.R.D., 1982. Hormesis: the stimulation of growth by low levels of inhibitors Sci. Total. Environ. 22:213–34CrossRefPubMedGoogle Scholar
  51. Stronkhorst J., Schipper C., Brils J., Dubbeldam M., Postma J., van de Hoevan N., 2003. Using marine bioassays to classify the toxicity of Dutch harbour sediments Environ. Toxicol. Chem. 22(7):1535–47CrossRefPubMedGoogle Scholar
  52. Sverdrup L.E., Fürst C.S., Weideborg M., Vik E.A., Stenersen J., 2002. Relative sensitivity of one freshwater and two marine acute toxicity tests as determined by testing offshore E & P chemicals Chemosphere 46:311–8CrossRefPubMedGoogle Scholar
  53. USEPA. (1977). Dredged material sample collection and preparation. Appendix B. In Ecological evaluation of proposed discharge of dredged material into ocean waters (Vicksburg Mississippi Environmental Protection Agency/Corps of Engineers Technical Committee for Dredged and Fill Material. Environmental Effects Laboratory U.S. Army Engineer Waterways Experiment Station)Google Scholar
  54. Vanhaecke P., Persoone G., 1981. Report on an intercalibration exercise on a short-term standard toxicity test with Artemia nauplii (ARC-test) INSERM 106:359–76Google Scholar
  55. Weideborg M., Vik E.A, Øfjord G.D., Kjønnø O., 1997. Comparison of three marine screening tests and four Oslo and Paris commission procedures to evaluate toxicity of offshore chemicals Environ. Toxicol. Chem. 12(2):384–9CrossRefGoogle Scholar
  56. Winger P.V., Laiser P.J., Geitner H., 1993. Toxicity of sediments and porewater from Brunswick Estuary, GA Arch. Environ. Contam. Toxicol. 21:321–76CrossRefGoogle Scholar
  57. Wong C.K.C., Cheung R.Y.H., Wong M.H., 1999. Toxicological assessment of coastal sediments in Hong Kong using a flagellate, Dunaliella tertiolecta Environ. Pollut. 105:175–83CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • M. Davoren
    • 1
  • S. Ní Shúilleabháin
    • 1
  • J.O’ Halloran
    • 2
  • M.G.J. Hartl
    • 2
  • D.  Sheehan
    • 2
  • N.M. O’Brien
    • 2
  • F.N.A.M. van Pelt
    • 2
  • C. Mothersill
    • 3
  1. 1.Radiation and Environmental Science Centre, FOCAS InstituteDublin Institute of TechnologyDublinIreland
  2. 2.Environmental Research Institute, University CollegeCorkIreland
  3. 3.McMaster University HamiltonCanada

Personalised recommendations