, Volume 14, Issue 5, pp 559–571 | Cite as

Effects of the Herbicide Isoproturon on Metallothioneins, Growth, and Antioxidative Defenses in the Aquatic Worm Tubifex tubifex (Oligochaeta, Tubificidae)

  • Yahia Y. Mosleh
  • Séverine Paris-Palacios
  • Michel Couderchet
  • Sylvie Biagianti-Risbourg
  • Guy Vernet


Metallothioneins (MTs) are low molecular weight proteins, mainly implicated in metal ion detoxification. Increase in MT contents is considered to be a specific biomarker of metal exposure. Recently it has been demonstrated that MTs participate in several cellular functions such as regulation of growth, and antioxidative defenses. Therefore, the induction of MTs as biomarkers of exposure to the pesticide isoproturon has been investigated in the aquatic worms Tubifex tubifex. MT levels in exposed worms increased significantly (p < 0.05) after 2, 4, and 7 days of exposure to different concentrations of isoproturon (maximum increase compared to unexposed controls: +148.56% for 10 mg l−1 after 4 days of exposure). In response to isoproturon, the activity of glutathione-S-transferase (max. +52%), glutathione-reductase (max. +100%), and catalase (max. +117%) increased, demonstrating the occurrence of an oxidative stress response to the herbicide. Thus, the increase in MT contents caused by isoproturon was interpreted as a defense response towards increased oxidative stress generated by the herbicide. Residues of isoproturon and its metabolites, 1-(4-isopropylphenyl)-3-methylurea, 1-(4-isopropylphenyl) urea, and 4-isopropylanilin were detected in the worm growth medium. Half-life of the herbicide was shorter at a low (0.1 mg l−1) initial concentration. The herbicide accumulated in T.tubifex but no metabolite could be detected.


biomarker, catalase, glutathione-reductase, glutathione-S-transferase, residues, metabolites, oxidative stress 


  1. ASTM (1994). Standard guide for conducting sediment toxicity tests with freshwater invertebrates. E 1383-94a. In Annual Book of ASTM Standards, Vol. 11.4, pp. 1-30. Philadelphia: ASTMGoogle Scholar
  2. Aston R.J., (1973). Tubificids and water quality: a reviewEnviron. Pollut. 5: 1–10CrossRefGoogle Scholar
  3. Bauer-Hilty A., Dallinger R., Berger B., (1989). Isolation and partial characterization of a Cd-binding protein from Lumbriculus variegatus (Oligochaeta, Annelida)Comp. Biochem. Physiol. 94C: 373–79Google Scholar
  4. Bebianno M.J., Nott J.A., Langston W.J., (1993). Cadmium metabolism in the clam Ruditapes decussata: the role of metallothioneinAquat. Toxicol. 27: 315–34CrossRefGoogle Scholar
  5. Bradford M.N., (1976). A rapid and sensitive method for the quantitation of micrograms of protein utilizing the principle of protein–dye bindingAnal. Biochem. 72: 248–54PubMedCrossRefGoogle Scholar
  6. Bremner I., (1987). Nutritional and physiological significance of metallothionein. In J.H.R. Kägi, Y. Kojima (eds). Metallothionein II. Basel: Birkäuser Verlag. pp. 81–107Google Scholar
  7. Carlberg I., Mannervik B., (1985) Glutathione reductase. In A. Meister (ed.). Method in Enzymology Vol. 113San Diego: Academic Press. pp. 484–9Google Scholar
  8. Cherian M.G., Goyer R.A., (1978). Minireview Metallothionein and their role in the metabolism and toxicity of metalLife Sci. 23: 1–10CrossRefPubMedGoogle Scholar
  9. Claiborne A., (1985) Catalase activity. In R.A. Greenwald (ed.) Handbook of Methods in Oxygen Radical Research. Boca-Raton: CRC Press. pp. 283–4Google Scholar
  10. Cossu C., Doyotte A., Jacquin M.C., Vasseur P., (1997) Biomarqueurs du stress oxydant chez les animaux aquatiques. In L. Lagadic, T. Caquet, J.C. Amiard, F. Ramade (eds). Biomarqueurs en Ecotoxicologie: Aspects Fondamentaux. Paris: Masson. pp. 149–61Google Scholar
  11. Dalton T., Palmiter R.D., Andrews G.K., (1994). Transcriptional induction of the mouse metallothionein-1 gene in hydrogen peroxide-treated hepatic cells involves a composite major late transcription factor/antioxidant response element and metal response promoter elementsNucl. Acid Res. 22: 5016–23CrossRefGoogle Scholar
  12. Davies S.R., Cousins R., (2000). Metallothionein expression in animal: a physiological perspective and functionRecent Advance Nutrition Sci.1085–8Google Scholar
  13. Davies J.M., Lowry C.V., Davies K.J.A., (1994) Free radicals. In H. Nohl, H. Esterbauer, C. Rice-Evans (eds). Environment, Medicine and Toxicology. London: Richelieu Press. pp. 563–78Google Scholar
  14. Eck P., Pallauf J., (1999). Induction of metallothionein by paraquat injection in zinc-deficient ratsJ. Anim. Physiol. An. N. 81: 203–11Google Scholar
  15. Geracitano L., Monserrat J.M., Bianchini A., (2002). Physiological and antioxidant enzyme responses to acute and chronic exposure of Laeonereis acuta (Polychaeta, Nereidiae) to copperExp. Marine Biol. Ecol. 277: 145–56CrossRefGoogle Scholar
  16. Geret F., Cosson P., (2002). Induction of specific isoforms of metallothioneins in mussel tissues after exposure to cadmium or mercuryArch. Environ. Contam. Toxicol. 42: 36–42CrossRefPubMedGoogle Scholar
  17. Gillis P.L., Diener L.C., Reynoldson T.R., Dixon D.G., (2002). Cadmium-induced production of a metallothionein protein in Tubifex tubifex (Oligochaeta) and Chironomus riparius (Diptera): correlation with reproduction and growthEnviron. Toxicol. Chem. 21: 1836–44CrossRefGoogle Scholar
  18. Gillis P.L., Reynoldson T.B., Dixon D.G., (2004). Natural variation in a metallothionein-like protein in Tubifex tubifex in the absence of metal exposureEcotox. Environ. Safe. 58: 22–8CrossRefGoogle Scholar
  19. Hazarika A., Sarkar S.N., (2001). Effect of isoproturon pretreatment on the biochemical toxicodynamics of anilofos in male ratsToxicology 165: 87–95CrossRefPubMedGoogle Scholar
  20. Helweg A., Fomsgaard I.E., Reffstrup T.K., Sørensen H., (1998). Degradation of mecoprop and isoproturon in soil. Influence of initial concentrationInt. J. Environ. Anal. Chem. 70: 133–48CrossRefGoogle Scholar
  21. Hensbergen P.J., van Velzen M.J.M., Nugroho R.A., Donker M.H., van Straalen N.M., (2000). Metallothionein-bound cadmium in the gut of the insect Orchesella cincta (Collembola) in relation to dietary cadmium exposureComp. Biochem. Physiol. C125: 17–24Google Scholar
  22. INRA (2004). AGRITOX – Base de données sur les substances actives phytopharmaceutiques. Scholar
  23. Karin M., (1985). Metallothionein: protein in search of functionCell 41: 9–10CrossRefPubMedGoogle Scholar
  24. Lucan-Bouché M.L., Biagianti-Risbourg S., Arsac F., Vernet G., (1999). An original decontamination process developed by the aquatic oligochaete Tubifex tubifex exposed to copper and leadAquat. Toxicol. 45: 9–17CrossRefGoogle Scholar
  25. Martin N.A., (1986). Toxicity of pesticides to Allobophora caliginosa (Oligochaeta: Lumbricidae)N. Z. J. Agr. Res. 29: 699–706Google Scholar
  26. Milbrik G., (1987). Biological characterization of sediments by standardized tubificid bioassaysHydrobiologia 155: 267–75CrossRefGoogle Scholar
  27. Mosleh Y.Y., Paris-Palacios S., Couderchet M., Vernet G., (2003a). Effects of the herbicide isoproturon on survival, growth rate, and protein content of mature earthworms (Lumbricus terrestris L.) and its fate in the soilAppl. Soil Ecol. 23: 69–77CrossRefGoogle Scholar
  28. Mosleh Y.Y., Ismail S.S., Ahmed M.T., Ahems Y.M., (2003b). Comparative toxicity and biochemical responses of certain pesticides on mature earthworms Aporrectodea caliginosa under laboratory conditionsEnviron. Toxicol. 19: 86–93Google Scholar
  29. Nordberg M., (1997). Metallothioneins: historical review and state of knowledge Talanta 46: 246–53Google Scholar
  30. Nöstelbacher K., Kirchgessner M., Stangl G.I., (2000). Separation and quantitation of metallothionein isoforms from liver of untreated rats by ion-exchange high-performance liquid chromatography and atomic absorption spectrometryJ. Chromatogr. B 744: 273–82CrossRefGoogle Scholar
  31. Paris-Palacios S., Biagianti-Risbourg S., Vernet G., (2003). Metallothionein induction related to structural perturbations and antioxidative defences in liver of roach (Rutilus rutilus) exposed to the fungicide procymidoneBiomarkers 8: 128–41CrossRefPubMedGoogle Scholar
  32. Regoli F., Nigro M., Bertoli E., Principato J., Orlando E., (1997). Defences against oxidative stress in the Antartic scallop Adamussium colbecki and effects of acute exposure to metalsHydrobiologia 355: 139–44CrossRefGoogle Scholar
  33. Reynoldson T.B., Thompson S.P., Bamsey J.L., (1991) A sediment bioassay using the tubificid oligochaete worm Tubifex tubifexEnviron. Toxicol. Chem. 10: 1061–72CrossRefGoogle Scholar
  34. Ribeiro S., Sousa J.P., Noguerira A.J.A., Soares A.M.V.M., (2001). Effect of endosulfan and parathion on energy reserves and physiological parameters of the terrestrial isopod Porcellio dilatatusEcotox. Environ. Safe. 49: 131–8CrossRefGoogle Scholar
  35. Ribera D., Narbonne J.F., Arnaud C., Saint-Denis M., (2001). Biochemical response of earthworms Eisenia fetida andrei exposed to contaminated artificial soil, effects of carbarylSoil Biol. Biochem. 33: 1123–30CrossRefGoogle Scholar
  36. Roesijadi G., (1992). Metallothionein in metal regulation and toxicity in aquatic animal Aquat. Toxicol. 22: 81–114CrossRefGoogle Scholar
  37. Saravana-Bhavan P., Geraldine P., (2001). Biochemical stress responses in tissues of the prawn Macrobarchium malcomsonii on exposure to endosulfanPestic. Biochem. Physiol. 70: 27–41CrossRefGoogle Scholar
  38. Schlenk D., Wolford L., Chelius M., Steevens J., Chan K.M., (1997). Effect of arsenite, arsenate, and the herbicide monosodium methyl arsenate (MSMA) on hepatic metallothionein expression and lipid peroxidation in channel catfishComp. Biochem. Physiol. 118C: 177–83CrossRefGoogle Scholar
  39. SIABAVE (2002). Synthèse des études menées sur le bassin versant du champ captant de Couraux (Marne). pp. 67–92. Rapport BRGM, FREDONCA. SIABAVE, ReimsGoogle Scholar
  40. Suzuki K.T., Yamamaura M., Mori T., (1980). Cadmium-binding proteins induced in earthwormArch. Environ. Contam. Toxicol. 9: 415–24CrossRefGoogle Scholar
  41. Tate D., Miceli M.V., Newsome D.A., (2002). Expression of metallothionein in human chorioretinal complexCurr. Eye Res. 24: 12–25CrossRefPubMedGoogle Scholar
  42. Viarengo A., (1989). Heavy metal in marine invertebrate: mechanisms of regulation and toxicity at the cellular levelCRC Crit. Rev. Aquat. Sci. 1: 295–317Google Scholar
  43. Widianarko B., van Straalen N., (1996). Toxicokinetics-based survival analysis in bioassays using non-persistent chemicalsEnviron. Toxicol. Chem. 15: 402–6CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Yahia Y. Mosleh
    • 1
    • 2
  • Séverine Paris-Palacios
    • 1
  • Michel Couderchet
    • 1
  • Sylvie Biagianti-Risbourg
    • 1
  • Guy Vernet
    • 1
  1. 1.Laboratoire d’Eco-Toxicologie, Unité de Recherche sur la Vigne et le Vin de Champagne, EA 2069 Faculté des SciencesUniversité de Reims Champagne-ArdenneReims cedex 02France
  2. 2.Department of Plant Protection, Faculty of AgricultureSuez Canal UniversityIsmailiaEgypt

Personalised recommendations