Advertisement

Ecotoxicology

, Volume 14, Issue 1–2, pp 253–262 | Cite as

Relating Land Cover Characteristics and Common Loon Mercury Levels Using Geographic Information Systems

  • David KramarEmail author
  • Wing M. Goodale
  • L. M. Kennedy
  • L. W. Carstensen
  • Taranjat Kaur
Article

Abstract

This effort models the relationship between mercury (Hg) levels in the common loon (Gavia immer) and land cover types as defined by the National Land Cover Database (NLCD). We constructed the model within the framework of a GIS to analyze the spatial relationships between land cover types and blood Hg levels in male common loons. Thiessan polygons were used to generate the territory for each loon. We created 150, 300, and 600-m buffers around the Thiessan polygons and modeled the relationships that existed in each distance class. Within the 150-m buffer, three cover types, crop land, shrub land, and wetland were significantly related to blood Hg levels (r2 = 0.552, p < 0.001), which may indicate that the proximity of these cover types influences Hg availability in loon territories. Cropland exhibited a negative relationship with blood Hg levels and may play a role in reducing the amount of available Hg within the study area while wetlands and shrub lands exhibit a positive relationship. The study area consisted of five major lakes and eleven smaller ponds in northwest Maine, and data included a total of 61 male common loon blood Hg samples.

Keywords

geographic information systems mercury common loon environmental modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babiarz, C.L., Hurley, J.P., Benoit, J.M., Shafer, M.M., Andren, A.W., Webb, D.A. 1998Seasonal influences on partitioning and transport of total and methylmercury in rivers from contrasting watershedsBiogeochemistry4123757Google Scholar
  2. Burrough, P., McDonnell, R. (1998). Principles of Geographic Information Systems. In P.A. Burrough, M.F. Godchild, R.A. McDonnell, P. Switzer and M. Worboys (eds), New York, Oxford: University PressGoogle Scholar
  3. Chen, C.Y., Stemberger, R.S., Kamman, N.C., Mayes, B., Folt, C. 2005Patterns of Hg bioaccumulation and transfer in aquatic food webs across multi-lake studies in the northeast USEcotoxicology1413548Google Scholar
  4. Delta Tributaries Mercury Council (DTMC), (2002). Strategic Plan for Mercury Risk in the Sacramento River Watershed. Appendix 4 Mercury Models ReportGoogle Scholar
  5. Driscoll, C.T., Yan, C., Schofield, C.L., Munson, R., Holsapple, J. 1994The mercury cycle and fish in the Adirondack lakesEnviron. Sci. Technol.28136A143AGoogle Scholar
  6. Driscoll, C.T., Holsapple, J., Schofield, C.L., Munson, R. 1998The chemistry and transport of mercury in a small wetland in the Adirondack region of New York, USABiogeochemistry4013746Google Scholar
  7. Evers, D.C., Lane, O.P., Savoy, L., Goodale, W. 2004Assessing the impacts of methylmercury on piscivorous wildlife using a wildlife criterion value based on the common loon, 1998–2003BioDiversity Research InstituteGorhamReport BRI 2004–05 submitted to the Maine Department of Environmental ProtectionGoogle Scholar
  8. Evers, D.C., Kaplan, J.D., Meyer, M.W., Reaman, P.S., Braselton, W.E., Major, A., Burgess, N., Scheuhammer, A.M. 1998A geographic trend in mercury measured in common loon feather and bloodEnviron. Toxicol. Chem.1717383Google Scholar
  9. Evers, D.C., Taylor, K.M., Major, A., Taylor, R.J., Poppenga, R.H., Scheuhammer, A.M. 2003Common Loon eggs as indicators of methylmercury availability in North AmericaEcotoxicology126981Google Scholar
  10. Gerrard, P.M., St. Louis, V.L. 2001The effects of experimental reservoir creation on the bioacummulation of methylmercury and reproductive success of tree swallows (Tachycineta bicolor)Environ. Sci. Technol.35132938Google Scholar
  11. Hurley, J.P., Benoit, J.M., Babiaz, C.L., Shafer, M.M., Andren, A.W., Sullivan, J.R., Hammond, R., Webb, D.A. 1995Influences of watershed characteristics on mercury levels in Wisconsin riversEnviron. Sci. Technol.29186775Google Scholar
  12. Kamman, N.C., Driscoll, C.T., Estabrook, R., Evers, D.C. and Miller, E. (2003). Biogeochemistry of Mercury in Vermont and New Hampshire Lakes – An Assessment of Mercury in Waters, Sediments and Biota of Vermont and New Hampshire Lakes. Comprehensive Final Project Report to USEPA. Waterbury, VT: VT Department of Environmental ConservationGoogle Scholar
  13. Kamman, N., Lorey, P., Driscoll, C., Estabrook, R., Major, A., Pientka, B. and Glassford, E. (2004). Assessment of mercury in waters, sediments, and biota of New Hampshire and Vermont lakes, USA, sampled using a geographically randomized design. Environ. Toxicol. Chem.1172–86Google Scholar
  14. Kamman, N.C., Burgess, N.M., Driscoll, C.T., Simonin, H.A., Linehan, J., Estabrook, R., Hutcheson, M., Major, A., Scheuhammer, A.M., Scruton, D.A. 2005Mercury in freshwater fish of northeast North America – a geographic perspective based on fish tissue monitoring databasesEcotoxicology1416380Google Scholar
  15. Kelley, C.A., Rudd, J.W.M., Bodaly, R.A., Roulet, N.P., St. Louis, V.L., Heyes, A., Moore, T.R., Schiff, S., Aravena, R., Scott, K.J., Dyck, B., Harris, R., Warner, B., Edwards, G. 1997Increases in fluxes of greenhouse gases and methylHg following flooding of an experimental reservoirEnviron. Sci. Technol.31133444Google Scholar
  16. Krabbenhoft, D.P., Benoit, J.M., Babiarz, C.L., Hurley, J.P., Andren, A.W. 1995Mercury cycling in the Allequash Creek watershed, Northern WisconsinWater, Air, and Soil Pollut.8042533Google Scholar
  17. Lee, Y., Bishop, K., Munthe, J., Iverfeldt, A., Verta, M., Parkman, H., Hultberg, H. 1998An examination of current Hg deposition and export in Fenno-Scandian catchmentsBiogeochemistry40125235Google Scholar
  18. Maine Office of GIS, (2003). GIS Data Catalog. http://apollo. ogis.state.me.us/catalog/ Google Scholar
  19. Mierle, G., Ingram, R. 1991The role of humic substances in the mobilization of mercury from watershedsWater Air Soil Pollut.5634957Google Scholar
  20. MiniTab Release 14.1, (2003). MiniTab Help Files, Regression.Google Scholar
  21. Miskimmin, B.M. 1991Effect of natural levels of dissolved organic carbon (DOC) on methyl mercury formation and sediment-water partitioningBull Environ. Contam. Toxicol.4774350Google Scholar
  22. Mississippi Department of Environmental Quality: Office of Pollution Control, (2000), Escatawpa River Phase One Total Maximum Daily Load for Mercury. Jackson: MississippiGoogle Scholar
  23. Peckenham, J., Kahl, S., Mower, B. 2003Background mercury concentrations in river water in Maine, USAEnviron. Monitor. Assess.8912952Google Scholar
  24. Pickhardt, P.C., Folt, C.L., Chen, C.Y., Klaue, B., Blum, J. 2002Algal blooms reduce the uptake of toxic methylmercury in freshwater food websPubl. Nat. Acad. Sci.99441923Google Scholar
  25. PRISM (Climate Data), (2003). National Resource Conservation Service. http://www.wcc.nrcs.usda.gov/climate/prism.htmlGoogle Scholar
  26. Rencz, A.N., O’Driscoll, N.J., Hall, G.E.M., Peron, T., Telmer, K., Burgess, N.M. 2003Spatial variation and correlations of mercury levels in the terrestrial and aquatic components of a wetland dominated ecosystem: Kejimkujik Park, Nova Scotia, CanadaWater, Air, and Soil Pollut.14327188Google Scholar
  27. Schetagne, R., Verdon, R. 1999Post-impoundment evolution of fish mercury levels at the La Grande Complex, Quebec, Canada (from 1978–1996)Lucotte, M.Schetagne, R.Therien, N.Langlois, C.Tremblay, A. eds. Mercury in the Biogeochemical CycleSpringer-VerlagNew York235258Google Scholar
  28. Shanley, J.B., Kamman, N.C., Clair, T.A., Chalmers, A. 2005Physical controls on total and methylmercury concentrations in streams and lakes of the northeastern USA.Ecotoxicology1412534Google Scholar
  29. Thompson, D.R. 1996Mercury in birds and terrestrial mammalsBeyer, W.H.Heinz, G.H.Redmond-Norwood, A.W. eds. Environmental Contaminants in Wildlife: Interpreting Tissue ConcentrationsLewis PublishersBoca Raton341356Google Scholar
  30. Tremblay, A., Cloutier, L., Lucotte, M. 1998Total mercury and methylmercury fluxes via emerging insects in recently flooded hydroelectric reservoirs and a natural lakeSci Total Environ.21920921Google Scholar
  31. USEPA2001Mercury Maps: A Quantitative Spatial Link Between Air Deposition and Fish TissueUnited States Environmental Protection AgencyWashington, DC.Google Scholar
  32. Vaidya, O.C., Howell, G., Leger, D. 2000Evaluation of the distribution of mercury in lakes in Nova Scotia and Newfoundland (Canada)Water, Air, and Soil Pollut.11735369Google Scholar
  33. Vaidya, O.C., Howell, G.D. 2002Interpretation of mercury concentrations in eight headwater lakes in Kejimkujik National Park, (Nova Scotia, Canada) by use of a geographic information system and statistical techniquesWater, Air, and Soil Pollut.1316588Google Scholar
  34. Wiener, J.G., Krabbenhoft, D.P., Heinz, G.H., Scheuhammer, A.M. 2003Ecotoxicology of mercuryHoffman, D.J.Rattner, B.A.Burton, G.A.,Jr.Cairns, J.,Jr. eds. Handbook of ecotoxicologyLewis PublishersBoca Raton409463Google Scholar
  35. Zillioux, E.J., Porcella, D.B., Benoit, J.B. 1993Mercury cycling and effects in freshwater wetland ecosystemsEnviron. Toxicol. Chem.12224564Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • David Kramar
    • 1
    • 4
    Email author
  • Wing M. Goodale
    • 2
  • L. M. Kennedy
    • 1
  • L. W. Carstensen
    • 1
  • Taranjat Kaur
    • 3
  1. 1.Department of GeographyVirginia Polytechnic Institute and State UniversityBlacksburg
  2. 2.BioDiversity Research InstituteGorham
  3. 3.Virginia-Maryland Regional College of Veterinary MedicineVirginia Polytechnic Institute and State UniversityBlacksburg
  4. 4.Senator George J. Mitchell Center for Environmental and Watershed ResearchOrono

Personalised recommendations