Ecotoxicology

, Volume 14, Issue 1–2, pp 181–191 | Cite as

Mercury Bioaccumulation in Northern Two-lined Salamanders from Streams in the Northeastern United States

  • Michael S. Bank
  • Cynthia S. Loftin
  • Robin E. Jung
Article

Abstract

Mercury (Hg) bioaccumulation in salamanders has received little attention despite widespread Hg contamination of aquatic ecosystems and worldwide amphibian declines. Here we report concentrations of methyl Hg (MeHg) and total Hg in larval northern two-lined salamanders (Eurycea bislineata bislineata) collected from streams in Acadia National Park (ANP), Maine, and Bear Brook Watershed, Maine (BBWM; a paired, gauged watershed treated with bimonthly applications (25 kg/ha/yr) of ammonium sulfate [(NH4)2SO4]) since 1989), and Shenandoah National Park (SNP), Virginia. MeHg comprised 73–97% of total Hg in the larval salamander composite samples from ANP. At BBWM we detected significantly higher total Hg levels in larvae from the (NH4)2SO4 treatment watershed. At ANP total Hg concentrations in salamander larvae were significantly higher from streams in unburned watersheds in contrast with larval samples collected from streams located in watersheds burned by the 1947 Bar Harbor fire. Additionally, total Hg levels were significantly higher in salamander larvae collected at ANP in contrast with SNP. Our results suggest that watershed-scale attributes including fire history, whole-catchment (NH4)2SO4 additions, wetland extent, and forest cover type influence mercury bioaccumulation in salamanders inhabiting lotic environments. We also discuss the use of this species as an indicator of Hg bioaccumulation in stream ecosystems.

Keywords

amphibian Eurycea bislineata bislineata mercury salamander stream watershed 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amirbahman, A., Ruck, P.L., Fernandez, I.J., Haines, T.A., Kahl, J.S. 2004The effect of fire on mercury cycling in the soils of forested watersheds: Acadia National Park, Maine, USAWater Air and Soil Poll.15231531Google Scholar
  2. Bank, M.S., Burgess, J.R., Evers, D.C. and Loftin, C.S. (2005). Mercury contamination of biota from Acadia National Park, Maine, USA: a review. Env. Mon. & Assess Google Scholar
  3. Brigham, M.E., Krabbenhoft, D.P. and Hamilton, P.A. (2003). Mercury in Stream Ecosystems – New Studies Initiated by the U.S. Geological Survey. USGS, Department of the Interior Fact Sheet 016–03Google Scholar
  4. Calhoun, A.J.K., Cormier, J.E., Owen, R.B.,Jr., Roman, C.E., O’Connell, A.F.,Jr., Tiner, R.W. 1994The wetlands of Acadia National Park and vicinityU.S. Fish and Wildlife Service, National wetlands InventoryNewton Corner, MAGoogle Scholar
  5. Clark, K.L., Hall, R.L. 1985Effects of elevated hydrogen ion and aluminum concentrations on the survival of amphibian embryos and larvaeCan. J. Zool.6311623CrossRefGoogle Scholar
  6. Clark, K.L., LaZerte, B.D. 1985A laboratory study of the effects of aluminum and pH on amphibian eggs and tadpolesCan. J. Fish. Aq. Sci.42154451Google Scholar
  7. Compeau, G., Bartha, R. 1985Sulfate reducing bacteria: principal methylators of mercury in anoxic estuarine sedimentsAppl. Environ. Microbiol.50498502PubMedGoogle Scholar
  8. Devereux, R., Winfrey, M.R., Winfrey, J., Stahl, D.A. 1996Depth profile of sulfate reducing bacterial ribosomal RNA and Hg methylation in an estuarine sedimentFEMS Microbiol. Ecol.202331Google Scholar
  9. Gilmour, C.G., Henry, E.A. 1991Mercury methylation in aquatic systems affected by acid depositionEnviron. Pollut.7113169PubMedGoogle Scholar
  10. Gilmour, C.G., Henry, E.A., Mitchell, R. 1992Sulfate stimulation of mercury methylation in freshwater sedimentsEnv. Sci. Tech.2622817Google Scholar
  11. Grigal, D.F. 2002Inputs and outputs of mercury from terrestrial watersheds: a reviewEnviron. Rev.10139Google Scholar
  12. Grimm, N.B., Gergel, W.E., McDoll, W.H., Boyer, E.W., Dent, C.L., Groffman, P., Hart, S.C., Harvey, J., Johnston, C., Mayorga, E., McClain, M.E., Pinay, J. 2003Merging aquatic and terrestrial perspectives of nutrient biogeochemistryOecologia442485501Google Scholar
  13. Harmon, S.M., King, J.K., Chandler, G.T., Newman, L.A. and Gladden, J.B. (2003). Mercury body burdens in Gambusia holbrooki and Erimyzon sucetta in a wetland mesocosm amended with sulfate. United States Department of Energy Report #WSRC- MS-2003-00374Google Scholar
  14. Houlahan, J.E., Findlay, C.S., Schmidt, B.R., Meyer, A.H., Kuzmin, S.L. 2000Quantitative evidence for global amphibian declinesNature40475255CrossRefPubMedGoogle Scholar
  15. Johnson, K.B., Haines, T.A., Kahl, J.S., Norton, S.A. and Amirbahman, A. (2005). Fire and its effects on mercury and methylmercury inputs. Environ. Monit. Assess Google Scholar
  16. Kahl, J.S., Fernandez, I., Manski, D., Haines, T.A. and Lent, R. (2002). Study of Atmospheric Deposition Effects on Surface Waters and Watershed Resources: Paired-gauged watershed research at Acadia National Park. USGS-BRD Technical ReportGoogle Scholar
  17. Lucotte, M.Schetagne, R.Thérien, N.Langlois, C.Tremblay, A. eds. 1999Mercury in the Biogeochemical CycleSpringer-VerlagGermanyGoogle Scholar
  18. Mierle, G. 1990Aqueous inputs of mercury to pre-cambrian shield lakes in OntarioEnviron. Toxicol. Chem.984351Google Scholar
  19. Morel, F.M.M., Kraepiel, A.M.L., Amyot, M. 1998The chemical cycle and bioaccumulation of mercuryAnn. Rev. Ecol. Syst.2954366Google Scholar
  20. Naiman, R.J., Décamps, H. 1997The ecology of interfaces – riparian zonesAnn. Rev. Ecol. Syst.2862158Google Scholar
  21. National Academy of Sciences (NAS)2000Toxicological Effects of MethylmercuryNational Research Council, National Academy PressWashington, DCGoogle Scholar
  22. National Atmospheric Deposition Program / Mercury Deposition Network (NADP/MDN). (2004). NADP Program Office, Illinois State Water Survey, 2204 Griffith Drive, Champaign, IL 61820, http://nadp.sws.uiuc.edu/
  23. Petranka, J.W. 1984Ontogeny of the diet and feeding behavior of Eurycea bislineata larvaeJ. Herp.184855Google Scholar
  24. Petranka, J.W. 1998Salamanders of the United StatesSmithsonian Institution PressWashington, D.CGoogle Scholar
  25. Relyea, R., Mills, N.A. 2001Predator-induced stress makes the pesticide carbaryl more deadly to grey treefrog tadpoles (Hyla versicolor)Proc. Natl. Acad. Sci.9824916PubMedGoogle Scholar
  26. Rouse, J.D., Bishop, C.A., Struger, J. 1999Nitrogen pollution: an assessment of the impact on amphibiansEnviron. Health Persp.10716Google Scholar
  27. Sparling, D.W.Linder, G.Bishop, C. eds. 2000Ecotoxicology of Amphibians and ReptilesSETAC PressPensacola, FL, USAGoogle Scholar
  28. Stebbins, R.C., Cohen, N.W. 1995A Natural History of AmphibiansPrinceton University PressPrinceton, New Jersey, USAGoogle Scholar
  29. SYSTAT Software Inc. (2002). SYSTAT 10.2. Richmond, CAGoogle Scholar
  30. United States Department of Energy (USDOE). (1999). Energy Information Administration. International Energy Annual 1997. Washington, D.CGoogle Scholar
  31. United States Environmental Protection Agency (USEPA). (1991). Methods for the Determination of Metals in Environmental Samples. EPA-600/4-91-010Google Scholar
  32. United States Environmental Protection Agency (USEPA). (2001). Method 1630: Methyl Mercury in Water by Distillation, Aqueous Ethylation, Purge and Trap, and CVAFS. EPA-821-R-01-020Google Scholar
  33. Webber, H.M., Haines, T.A. 2003Mercury effects on predator avoidance behavior of a forage fish, golden shiner (Notemigonus crysoleucas)Environ. Toxicol. Chem.22155661PubMedGoogle Scholar
  34. Wiener, J.G., Fitzgerald, W.F., Watras, C.J., Rada, R.G. 1990Partitioning and bioavailability of mercury in an experimentally acidified Wisconsin lakeEnviron. Toxicol. Chem.990918Google Scholar
  35. Wiener, J.G., Krabbenhoft, D.P., Heinz, G.H. and Scheuhammer, A.M. (2003). Ecotoxicology of mercury. In: Hoffman, D.J., Rattner, B.A., Burton, G.A. Jr., and Cairns J.(eds) Handbook of Ecotoxicology, 2nd ed. CRC Press, Chapter 16Google Scholar
  36. Wiener, J.G., Spry, D.J. 1996

    Toxicological significance of mercury in freshwater fish

    Beyer, W.N.Heinz, G.H.Redmon-Norwood, A.W. eds. Environmental Contaminants in Wildlife: Interpreting Tissues ConcentrationsBoca RatonFL, USA297339
    Google Scholar
  37. Wipfli, M.S. 1997Terrestrial invertebrates as salmonid prey and nitrogen sources in streams: contrasting old growth and young-growth riparian forests in south-eastern Alaska USACan. J. Fish. Aquat. Sci.54125969Google Scholar
  38. Witt, W.L. 1993Annotated checklist of the amphibians and reptiles of Shenandoah National Park, VirginiaCatesbeiana132635Google Scholar
  39. Zar, J.H. 1999Biostatistical analysis4 th ed. Prentice Hall PressUpper Saddle River, NJGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Michael S. Bank
    • 1
    • 2
  • Cynthia S. Loftin
    • 3
  • Robin E. Jung
    • 4
  1. 1.Department of Biological Sciences, Program in Ecology & Environmental SciencesUniversity of MaineOronoUSA
  2. 2.Harvard UniversityHarvard Forest, PetershamUSA
  3. 3.United States Geological SurveyMaine Cooperative Fish and Wildlife Research UnitOronoUSA
  4. 4.United States Geological SurveyPatuxent Wildlife Research CenterLaurelUSA

Personalised recommendations