, Volume 14, Issue 1–2, pp 163–180 | Cite as

Mercury in Freshwater Fish of Northeast North America – A Geographic Perspective Based on Fish Tissue Monitoring Databases

  • Neil C KammanEmail author
  • Neil M. Burgess
  • Charles T. Driscoll
  • Howard A. Simonin
  • Wing Goodale
  • Janice Linehan
  • Robert Estabrook
  • Michael Hutcheson
  • Andrew Major
  • Anton M. Scheuhammer
  • David A. Scruton


As part of an initiative to assemble and synthesize mercury (Hg) data from environmental matrices across northeastern North America, we analyzed a large dataset comprised of 15,305 records of fish tissue Hg data from 24 studies from New York State to Newfoundland. These data were summarized to provide mean Hg concentrations for 40 fish species and associated families. Detailed analyses were carried out using data for 13 species. Hg in fishes varied by geographic area, waterbody type, and waterbody. The four species with the highest mean Hg concentrations were muskellunge (Esox masquinongy), walleye (Sander vitreus), white perch (Morone americana), and northern pike (Esox luscius). Several species displayed elevated Hg concentrations in reservoirs, relative to lakes and rivers. Normalized deviations from mean tissue levels for yellow perch (Perca flavescens) and brook trout (Salvelinus fontinalis) were mapped, illustrating how Hg concentrations in these species varied across northeastern North America. Certain geographic regions showed generally below or above-average Hg concentrations in fish, while significant heterogeneity was evident across the landscape. The proportion of waterbodies exhibiting exceedances of USEPA’s criterion for fish methylmercury ranged from 14% for standard-length brook trout fillets to 42% for standard-length yellow perch fillets. A preliminary correlation analysis showed that fish Hg concentrations were related to waterbody acidity and watershed size.


mercury fish tissue length lake reservoir river indicator GIS 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armheim, J.F., Geis, S.W. 2001Mercury concentrations in yellow perch (Perca flavencens) from Vilas County, Wisconsin: 1920’s vs. 1980’sBull. Environ. Contam. Toxicol.6663845Google Scholar
  2. Atchison, C.M. (1994). Mercury exposure in common loons (Gavia immer) breeding in Ontario. Unpubl. M.Sc. Thesis. Peterborough, ON: Trent UniversityGoogle Scholar
  3. Barry, E., Curry, A. 1998Mercury pathways and trophic interactions in New Brunswick Lake Study – Progress reportTeam, Mercury eds. Mercury in Atlantic Canada: A Progress ReportEnvironment Canada – Atlantic RegionSackville, NB8588Google Scholar
  4. Biester, H., Kilian, R., Franzen, C., Woda, C., Mangini, A., Scholer, H. 2002Elevated mercury accumulation in a peat bog of the Magellanic Moorlands, Chile (53 S) – an anthropogenic signal from the Southern HemisphereEarth Planet. Sci. Lett.20160920Google Scholar
  5. Bodaly, R.A., Rudd, J., Fudge, R., Kelly, C. 1993Mercury concentrations in fish related to size of remote Canadian Shield lakesCan. J. Fish. Aquat. Sci.5098087CrossRefGoogle Scholar
  6. Chalmers, A. (2002). New England Coastal Gradient Mercury Project Unpubl. data. U.S. Geological Survey, Montpelier, VT: United States Geological SurveyGoogle Scholar
  7. Chen, C.Y., Stemberger, R.S., Kamman, N.C., Mayes, B. and Folt, C. (2005). Patterns of Hg bioaccumulation and transfer in aquatic food webs across multi-lake studies in the Northeast U.S. Ecotoxicology 14, 135–147Google Scholar
  8. Chen, C.Y., Stemberger, R., Klauje, B., Blum, J., Pickhardt, P., Folt, C.L. 2000Accumulation of heavy metals across a gradient of lakesLimnol. Oceanogr.45152536CrossRefGoogle Scholar
  9. Cope, W.G., Wiener, J.G., Rada, R.G. 1990Mercury accumulation in yellow perch in Wisconsin seepage lakes: relation to lake characteristicsEnviron. Toxicol. Chem.993140Google Scholar
  10. Dennis, I.F., Clair, T.A., Driscoll, C.T., Kamman, N.C., Chalmers, A., Shanley, J., Norton, S.A., Kahl, S. 2005Distribution patterns of mercury in lakes and rivers of northeastern North AmericaEcotoxicology14113124PubMedGoogle Scholar
  11. DiPasquale, M.M., Agee, J., McGowan, C., Omerland, R., Thomas, M., Krabbenhoft, D., Gilmour, C. 2000Methyl-mercury degradation pathways: a comparison among three mercury-impacted ecosystemsEnviron. Sci. Technol.34490816Google Scholar
  12. Driscoll, C.T., Yan, C., Schofield, C.L., Munson, R., Holsapple, J. 1994The mercury cycle and fish in the Adirondack lakesEnviron. Sci. Technol.28136A143AGoogle Scholar
  13. Drysdale, C., Burgess, N.M., d’Entremont, A., Carter, J. and Brun, G. (2005). Mercury in brook trout, white perch and yellow perch in Kejimkujik National Park and National Historic Site. In A. Rencz and N. O’Driscoll (eds). Mercury Cycling in a Wetland Dominated Ecosystem: A Multidisciplinary Study. Pensacola FL: SETAC Press, in pressGoogle Scholar
  14. Engstrom, D.B., Swain, E.B. 1996Recent declines in atmospheric mercury deposition in the upper MidwestEnviron. Sci. Technol.3196067Google Scholar
  15. Evers, D.C., Burgess, N.M., Champoux, L., Hoskins, B., Major, A., Goodale, W., Taylor, R.J., Poppenga, R., Daigle, T. 2005Patterns and interpretation of mercury exposure in freshwater avian communities in northeastern North America.Ecotoxicology14193222PubMedGoogle Scholar
  16. Evers, D.C., Clair, T.A. 2005Mercury in northeastern North America: a synthesis of existing databases.Ecotoxicology14714PubMedGoogle Scholar
  17. Evers, D.C., Lane, O.P., DeSorbo, C. and Savoy, L. (2002). Assessing the impacts of methylmercury on piscivorous wildlife using a wildlife criterion value based on the Common Loon, 1998–2001, Report BRI 2002–08. Falmouth, ME: BioDiversity Research InstituteGoogle Scholar
  18. Froese, R. and Pauly, D. (eds) (2003). Fish Base. World Wide Web electronic publication., version 08 March 2004
  19. Greib, T.M., Driscoll, C.T., Gloss, S.P., Schofield, C.L., Bowie, G.I., Porcella, D.B. 1990Factors affecting mercury accumulation in fish in the upper Michigan peninsulaEnviron. Toxicol. Chem.991930Google Scholar
  20. Haines, T.A., Komov, V.T., Jagoe, C.H. 1994Mercury concentration in perch (Perca fluviatalis) as influences by lacustrine physical and chemical factors in RussiaWatras, C.J.Huckabee, J.W. eds. Mercury Pollution: Integration and SynthesisLewis Publishers, CRC PressBoca Raton, FL397407Google Scholar
  21. Hanten, R.P., Neumann, R.M., Ward, S.M., Carley, R.J., Perkins, C.R., Pirrie, R. 1998Relationship between the concentrations of mercury in largemouth bass and physical and chemical characteristicsTrans. Am. Fish. Soc.12780718Google Scholar
  22. Health Canada. (2002). Advisory. Mercury levels in fish. Press release 2002–41. Internet URL: last accessed 4/2004
  23. Horwich, M. 1994Results of Analysis on 28 Fish from Nova Scotia LakesNS Department of EnvironmentSackville, NSGoogle Scholar
  24. Hurley, J.P., Benoit, J., Barbiaz, C., Shafer, M., Andern, A., Sullivan, J., Hammond, R., Webb, D. 1995Influences of watershed characteristics on mercury levels in Wisconsin riversEnviron. Sci. Technol.29186775Google Scholar
  25. Kamman, N.C., Chalmers, A., Clair, T.A., Major, A., Moore, R.B., Norton, S.A. and Shanley, J.B. (2005). Factors influencing mercury in freshwater surface sediments of northeastern North America. Ecotoxicology 14, 101–111Google Scholar
  26. Kamman, N.C., Driscoll, C.T., Estabrook, R., Evers, D.C. and Miller, E. (2003). Biogeochemistry of Mercury in Vermont and New Hampshire Lakes – An Assessment of Mercury in Waters, Sediments and Biota of Vermont and New Hampshire Lakes. Waterbury, VT: Comprehensive Final Project Report to USEPA. VT Department of Environmental ConservationGoogle Scholar
  27. Kamman, N.C., Engstrom, D.R. 2002Historical and present fluxes of mercury to Vermont and New Hampshire lakes inferred from 210Pb-dated sediment coresAtmos. Environ.36159910Google Scholar
  28. Kamman, N.C., Lorey, P.M., Driscoll, C.T., Estabrook, R., Major, A., Pientka, B., Glassford, E. 2004Assessment of mercury in waters, sediments and biota of New Hampshire and Vermont lakes sampled using a geographically randomized designEnviron. Toxicol. Chem.23117286PubMedGoogle Scholar
  29. Kidd, K.A., Hesslein, R.H., Fudge, R.J.P., Hallard, K.A. 1995The influence of trophic level as measured by δ15N on mercury concentrations in freshwater organismsWater Soil Air Pollut.80101115Google Scholar
  30. Kuehl, R.O. 2000Design of Experiments: Statistical Principles of Research Design and AnalysisDuxbury PressPacific Grove, CAGoogle Scholar
  31. Lindberg, S.E., Brooks, S.B., Lin, C.-J., Scott, K.J., Landis, M.S., Stevens, R.K., Goodsite, M., Richter, A. 2002The dynamic oxidation of gaseous mercury in the Arctic atmosphere at polar sunriseEnviron. Sci. Technol.36124556PubMedGoogle Scholar
  32. Maine Department of Environmental Protection. (1995). Fish Tissue Contamination in Maine Lakes, Data Report. Regional Environmental Monitoring and Assessment Program. Augusta, ME: MEDEPGoogle Scholar
  33. Major, A. (2003). Mercury in Fishes of Southeast New Hampshire Lakes Project. Unpubl. data. Concord, NH: US Fish & Wildlife ServiceGoogle Scholar
  34. Mierle, G., Ingram, R. 1991The role of humic substances in the mobilization of mercury from watershedsWater Air Soil Pollut.5634957Google Scholar
  35. Mueller, K.W., Serdar, D.M. 2002Total mercury concentrations among fish and crayfish inhabiting different trophic levels in Lake Whatcom, WashingtonJ. Freshwater Ecol.1762133Google Scholar
  36. National Academy of Sciences.2000Toxicological Profile for MethylmercuryNational Academy PressWashington, DCGoogle Scholar
  37. Neumann, R.M., Carley, R.J., Perkins, C.R. and Pirrie, R. (1996). Preliminary assessment of total mercury concentrations in fishes from Connecticut waterbodies. Report to Connecticut Department of Environmental Protection. Ecosystem Research Institute, 122 pp. Storrs CT: University of ConnecticutGoogle Scholar
  38. New Hampshire Department of Environmental Services. (2003). New Hampshire Fish Tissue Monitoring Database. Unpubl. data. Concord, NH Department of Environmental Services NHGoogle Scholar
  39. New York State Department of Environmental Conservation. (2003). New York Fish Tissue Monitoring Database. Unpubl. data. Rome, NY State Department of Environmental Conservation NYGoogle Scholar
  40. Northeast States for Coordinated Air Use Management,2003Mercury from Coal-fired Power Plants: The Case for Regulatory ActionNESCAUMBoston, MAGoogle Scholar
  41. New Brunswick Dept. of Health & Community Services.1994A Survey of Total Mercury Concentrations in Fish in Selected New Brunswick LakesNB Department of Health & Community ServicesFredericton, NBGoogle Scholar
  42. Norton, S., Evans, G.C., Kahl, J.S. 1997Comparison of Hg and Pb fluxes to hummocks and hollows of ombrotrophic Big Heath bog and to nearby Sargent Mt. Pond, Maine, USAWater Air Soil Pollut.10027186Google Scholar
  43. Nova Scotia Power.1995Water Fee Credit Program – Mercury in Fish Tissue Field Report 1995–01NS PowerHalifax, NSGoogle Scholar
  44. Pacyna, E.G., Pacyna, J.M. 2002Global emission of mercury from anthropogenic sources in 1995Water Air Soil Pollut.13714965Google Scholar
  45. Peterson, R.H., Sreedharan, A., Ray, S. 1990Accumulation of trace metals in three species of fish from lakes in New Brunswick and Nova Scotia (Canada): influence of pH and other chemical parametersWater Pollut. Res. J. Can.2410017Google Scholar
  46. Pickhardt, P.C., Folt, C.L., Chen, C.Y., Klaue, B., Blum, J. 2002Algal blooms reduce the uptake of toxic methylmercury in freshwater food websProc. Natl. Acad. Sci.99441923PubMedGoogle Scholar
  47. Province of Quebec. (2002). Toxics in Sportfish Databank. Unpubl. data. Quebec City, QC: Quebec Ministry of EnvironmentGoogle Scholar
  48. Rea, A.W., Lindberg, S.E., Scherbatskoy, T., Keeler, G.J. 2002Mercury accumulation in foliage over time in tow northern mixed hardwood forestsWater Air Soil Pollut.1334967Google Scholar
  49. Regnell, O. 1994The effect of pH and dissolved oxygen levels on methylation and partitioning of mercury in model freshwater systemsEnviron. Pollut.8415763Google Scholar
  50. Rimmer, C.C., McFarland, K.P., Evers, D.C., Miller, E.K., Aubry, A., Busby, D. and Taylor, R.J. (2005). Mercury levels in Bicknell’s thrush and other passerines in montane forests of notheastern North America. Ecotoxicology 14, 223--40Google Scholar
  51. Rose, J., Hutcheson, M.S., West, C.R., Pancorbo, O., Hume, K., Cooperman, A., DeCesare, G., Isaac, R., Screpetis, A. 1999Fish mercury distribution in Massachusetts, USA lakesEnviron. Toxicol. Chem.18137079Google Scholar
  52. Rutherford, L.A., Brun, G., Julien, G.R.J., Hebert, F. and Mroz, R.E. (1998). Mercury in yellow perch study – progress report. In Mercury Team (eds). Mercury in Atlantic Canada: A Progress Report, pp. 81–84. Sackville, Environment Canada – Atlantic Region NBGoogle Scholar
  53. SAS Institute.2002SAS/STAT Version 8.2aSAS InstituteCary, NCGoogle Scholar
  54. Scherbatskoy, T.D., Poirot, R.L., Stunder, B.J. and Artz, R. (1999). Current knowledge of air pollution and air resource issues in the Lake Champlain BasinIn Lake Champlain in Transition: From Research Toward Restoration. Water. Sci. Appl, pp. 1–23. 1 Washington, DC: American Geophysical Union.Google Scholar
  55. Schetagne, R., Verdon, R. 1999Mercury in fish of natural lakes of northern QuebecLucotte, M.Schetagne, R.Therien, N.Langlois, C.Tremblay, A. eds. Mercury in the Biogeochemical Cycle: Natural Environments and Hydroelectric Reservoirs of Northern Quebec (Canada)SpringerNew York115130Google Scholar
  56. Scruton D.A. (1983). A survey of headwater lakes in insular Newfoundland, with special reference to acid rain precipitation. Can. Tech. Rep. Fish. Aquat. Sci. 1195, 1–110Google Scholar
  57. Scruton, D.A. (1984). A survey of selected lakes in Labrador, with an assessment of lake status and sensitivity in relation to acid precipitation. Can. Tech. Rep. Fish. Aquat. Sci. 1296, 1–115Google Scholar
  58. Shanley, J.B., Kamman, N.C., Clair, T. and Evers, D. (2005). Physical controls on total and methylmercury concentrations in streams and lakes of northeastern North America. Ecotoxicology 14, 125–34Google Scholar
  59. Simonin, H.A., Gloss, S.P., Driscoll, C.T., Schofield, C.L., Kretser, W.A., Karcher, R.W., Symula, J. 1994Mercury in yellow perch from Adirondack drainage lakes (New York U.S.)Watras, C.J.Huckabee, J. eds. Mercury Pollution and SynthesisCRC Press Incpp. 457–469, Boca Raton, FLGoogle Scholar
  60. Simonin, H.A., Meyer, M.W. 1998Mercury and other air toxics in the Adirondack region of New YorkEnviron. Sci. Policy1199209Google Scholar
  61. Spry, D.J., Wiener, J.G. 1991Metal bioavailability and toxicity to fish in low-alkalinity lakes: a critical reviewEnviron. Pollut.71243304PubMedGoogle Scholar
  62. Stafford, C.P., Haines, T.A. 1997Mercury concentrations in Maine sport fishesTrans. Am. Fish. Soc.12614452Google Scholar
  63. United Nations Environmental Programme. (2002). United Nations Environmental Programme Global Mercury Assessment Report. Geneva: UNEPGoogle Scholar
  64. United States Environmental Protection Agency. (1994). Methods for the Determination of Metals in Environmental Samples. EPA/600/R-94/111 Washington, DC: USEPAGoogle Scholar
  65. United States Environmental Protection Agency. (1995). EMAP-Surface Waters Northeast Lakes Demonstration Project. Data report for 1993 Survey. Washington, DC: USEPAGoogle Scholar
  66. United States Environmental Protection Agency. (1996). Method 1631 Mercury in Water by Oxidation, Purge and Trap, and Cold Vapor Atomic Fluorescence Spectrometry. EPA/821/R96012. Washington, DC: USEPAGoogle Scholar
  67. United States Environmental Protection Agency. (1997). Mercury Study Report to Congress. EPA 425-R97-003. Washington, DC: USEPAGoogle Scholar
  68. United States Environmental Protection Agency. (2001a). National Study of Chemical Residues in Fish. EPA-823-F-01-028. Washington, DC: USEPAGoogle Scholar
  69. United States Environmental Protection Agency. (2001b). Water Quality Criteria for Methylmercury. EPA-823-R-01-001. Washington, DC: USEPAGoogle Scholar
  70. United States Food & Drug Administration. (2004). Backgrounder for the 2004 FDA/EPA Consumer Advisory: What you need to know about Mercury in Fish and Shellfish. Internet URL: last accessed 4/2004
  71. Verdon, R., Tremblay, A. 1999Mercury accumulation in fish from the LaGrande Complex: influence of feeding habits␣and concentrations of mercury in ingested preyLucotte, M.Schetagne, R.Therien, N.Langlois, C.Tremblay, A. eds. Mercury in the Biogeochemical Cycle: Natural Environments and Hydroelectric Reservoirs of Northern Quebec (Canada)SpringerNew York215233Google Scholar
  72. Vermont Advisory Committee on Mercury Pollution. (2004). Annual Report to the Vermont General Assembly. Internet URL: last updated 1/2004
  73. Vermont Department of Environmental Conservation.1995A Compendium of Fish Tissue Monitoring DataVTDECWaterbury, VTGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Neil C Kamman
    • 1
    Email author
  • Neil M. Burgess
    • 2
  • Charles T. Driscoll
    • 3
  • Howard A. Simonin
    • 4
  • Wing Goodale
    • 5
  • Janice Linehan
    • 6
  • Robert Estabrook
    • 7
  • Michael Hutcheson
    • 8
  • Andrew Major
    • 9
  • Anton M. Scheuhammer
    • 1
    • 10
  • David A. Scruton
    • 11
  1. 1.Vermont Department of Environmental Conservation – Water Quality DivisionWaterburyUSA
  2. 2.Canadian Wildlife ServiceEnvironment Canada-Atlantic RegionMt. PearlCanada
  3. 3.Department of Civil and Environmental EngineeringSyracuse UniversitySyracuseUSA
  4. 4.New York State Department of Environmental ConservationRome Field Station, RomeUSA
  5. 5.Biodiversity Research InstituteGorhamUSA
  6. 6.Canadian Natural Resources Ltd.CalgaryCanada
  7. 7.New Hampshire Department of Environmental ConservationConcordUSA
  8. 8.Massachusetts Department of Environmental ProtectionBostonUSA
  9. 9.United States Fish and Wildlife ServiceConcordUSA
  10. 10.Canadian Wildlife Service – National Wildlife Research CentreOttawaCanada
  11. 11.Fisheries and Oceans CanadaSt. John’sCanada

Personalised recommendations