, Volume 14, Issue 1–2, pp 125–134 | Cite as

Physical Controls on Total and Methylmercury Concentrations in Streams and Lakes of the Northeastern USA

  • James B. Shanley
  • Neil C. Kamman
  • Thomas A. Clair
  • Ann Chalmers


The physical factors controlling total mercury (HgT) and methylmercury (MeHg) concentrations in lakes and streams of northeastern USA were assessed in a regional data set containing 693 HgT and 385 corresponding MeHg concentrations in surface waters. Multiple regression models using watershed characteristics and climatic variables explained 38% or less of the variance in HgT and MeHg. Land cover percentages and soil permeability generally provided modest predictive power. Percent wetlands alone explained 19% of the variance in MeHg in streams at low-flow, and it was the only significant (p < 0.02) predictor for MeHg in lakes, albeit explaining only 7% of the variance. When stream discharge was added as a variable it became the dominant predictor for HgT in streams, improving the model r 2 from 0.19 to 0.38. Stream discharge improved the MeHg model more modestly, from r 2 of 0.25 to 0.33. Methylation efficiency (MeHg/HgT) was modeled well (r 2 of 0.78) when a seasonal term was incorporated (sine wave with annual period). Physical models explained 18% of the variance in fish Hg concentrations in 134 lakes and 55% in 20 reservoirs. Our results highlight the important role of seasonality and short-term hydrologic changes to the delivery of Hg to water bodies.


total mercury methylmercury SPARROW land use high flow events 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allan, C.J., Heyes, A., Roulet, N.T., Louis, V.L., Rudd, J.W.M. 2001Spatial and temporal dynamics of mercury in Precambrian Shield upland runoffBiogeochemistry521340Google Scholar
  2. Babiarz, C.L., Hurley, J.P., Benoit, J.M., Shafer, J.M., Shafer, M.M., Andren, A.W., Webb, D.A. 1998Seasonal influences on partitioning and transport of total and methylmercury in rivers from contrasting watershedsBiogeochemistry4123757Google Scholar
  3. Balogh, S.J., Meyer, M.L., Johnson, D.K. 1998Tramsport of mercury in three contrasting river basinsEnviron. Sci. Technol.3245662Google Scholar
  4. Bishop, K., Lee, Y-H., Pettersson, C., Allard, B. 1995aTerrestrial sources of methylmercury in surface waters: the importance of the riparian zone on the Svartberget catchmentWater Air Soil Pollut.8043544Google Scholar
  5. Bishop, K., Lee, Y-H., Pettersson, C., Allard, B. 1995bMethylmercury output from the Svartberget catchment in northern Sweden during spring floodWater Air Soil Pollut.8044554Google Scholar
  6. Branfireun, B.A., Heyes, A., Roulet, N.T. 1996The hydrology and methylmercury dynamics of a Precambriam Shield headwater peatlandWater Resour. Res.32178594Google Scholar
  7. Chalmers, A.T. and Krabbenhoft, D.P. (2001). Total and methyl mercury distribution in water, sediment, and fish tissue in New England streams, American Geophysical Union (AGU) Spring Meeting, May 29–June 2, 2001, Boston, MassGoogle Scholar
  8. Dennis, I., Clair, T.A., Driscoll, C.T., Kamman, N.C., Chalmers, A. Shanley, J.B., Norton, S. and Kahl, S. (2005). Distribution Patterns of mercury in Lakes and Rivers of Northeastern North America. Ecotoxicology 14, 113–123Google Scholar
  9. Driscoll, C.T., Yan, C., Schofield, C.L., Munson, R., Holsapple, J. 1994The mercury cycle and fish in the Adirondack lakesEnviron. Sci. Technol.28136A43AGoogle Scholar
  10. Ericksen, J.S., Gustin, M.S., Schorran, D.E., Johnson, D.W., Lindberg, S.E., Coleman, J.S. 2003Accumulation of atmospheric mercury in forest foliageAtmos. Environ.37161322Google Scholar
  11. Evers, D.C. and Clair, T.A. (2005). Mercury in NorthEastern North America: A synthesis of Existing Databases. Ecotoxicology 14, 7–13Google Scholar
  12. Garcia, E., Carignan, R. 2000Mercury concentrations in northern pike (Esox lucius) from boreal lakes with logged, burned, or undisturbed catchmentsCan. J. Fish. Aquat. Sci.5712935Google Scholar
  13. Grigal, D.F. 2002Inputs and outputs of mercury from terrestrial watersheds: a reviewEnviron. Rev.10139Google Scholar
  14. Hurley, J.P., Benoit, J.M., Babiarz, C.L., Schafer, M.M., Andren, A.W., Sullivan, J.R., Hammond, R., Webb, D.A. 1995Influences of watershed characteristics on mercury levels in Wisconsin riversEnviron. Sci. Technol.29186775Google Scholar
  15. Hurley, J.P., Cowell, S.E., Shafer, M.M., Hughes, P.E. 1998Tributary loading of mercury to Lake Michigan: importance of seasonal events and phase partitioningSci. Total Environ.21312937Google Scholar
  16. Kamman, N.C., Burgess, N.M., Driscoll, C.T., Simonin, H.A., Goodale, W., Linehan, J., Estabrook, R., Hutcheson, M., Major, A., Scheuhanmer, A.M. 2005Mercury in freshwater fish of northeast North America – a geographic perspective based on fish tissue monitoring databasesEcotoxicology14163180PubMedGoogle Scholar
  17. Kamman, N.C., Driscoll, C.T., Estabrook, R., Evers, D.C. and Miller, E. (2003). Biogeochemistry of Mercury in Vermont and New Hampshire Lakes – An Assessment of Mercury in Waters, Sediments and Biota of Vermont and New Hampshire Lakes. Comprehensive Final Project Report to USEPA. VT Department of Environmental Conservation, Waterbury, VTGoogle Scholar
  18. Kamman, N.C., Engstrom, D.R. 2002Historical and present fluxes of mercury to Vermont and New Hampshire lakes inferred from 210Pb-dated sediment coresAtmos. Environ.361599610Google Scholar
  19. Kamman, N.C., Lorey, P.M., Driscoll, C.T., Estabrook, R., Major, A., Pientka, B., Glassford, E. 2004Assessment of mercury in waters, sediments and biota of New Hampshire and Vermont lakes sampled using a geographically randomized designEnviron. Toxicol. Chem.23117286PubMedGoogle Scholar
  20. Kannan, K., Smith, R.G.,Jr., Lee, R.F., Windom, H.L., Heitmuller, P.T., Macauley, J.M., Summers, J.K. 1998Distribution of total mercury and methyl mercury in water, sediment, and fish from south Florida estuariesArch. Environ. Contam. Toxicol.3410918PubMedGoogle Scholar
  21. Kelly, C.A., Rudd, J.W.M., Bodaly, R.A., Roulet, N.P., Louis, V.L., Heyes, A., Moore, T.R., Schiff, S., Aravena, R., Scott, K.J., Dyck, B., Harris, R., Warner, B., Edwards, G. 1997Increases in fluxes of greenhouse gases and methylmercury following flooding of an experimental reservoirEnviron. Sci. Technol31133444DOI: 10.1021/es9604931Google Scholar
  22. Krabbenhoft, D.P., Tate, M., Olson, M.L., DeWild, J.F., Olund, S. Branfireun, B.A. and Heyes, A. (2004). Are uplands the key to understanding possible lag times for ecosystem recovery to reduced atmospheric mercury loading? Results from the first two years of mercury stable isotope additions to the uplands of the METAALICUS project. Proc. 2004 American Geophysical Union Joint Assembly, Montreal, PQ, Canada. EOS, Transactions of the Amer. Geophys. Union, AGU, Washington, D.CGoogle Scholar
  23. Kramar, D., Goodale, W., Kennedy, L.M., Carstensen, L.W. and Kaur, T. (2005). Relating land cover characteristics and common loon mercury levels using geographic information systems. Ecotoxicology 14, 253–262Google Scholar
  24. Lee, Y.H., Bishop, K.H., Munthe, J. 2000Do concepts about catchment cycling of methylmercury and mercury in boreal catchments stand the test of time? Six years of atmospheric inputs and runoff export at Svartberget, northern SwedenSci. Total Environ.2601120PubMedGoogle Scholar
  25. Lucotte M., Schetagne R., Therien N., Langlois C. and Tremblay A. (eds.) (1999). Mercury in the Biogeochemical Cycle. Natural Environments and Hydroelectric Reservoirs of Northern Quebec. Springer-VerlagGoogle Scholar
  26. Mierle, G., Ingram, R. 1991The role of humic substances in the mobilization of mercury from watershedsWater Air Soil Pollut.5634957Google Scholar
  27. Miller, E.K., VanArsdale, A., Keeler, G.J., Chalmers, A., Poissant, L., Kamman, N., and Brulotte, R. (2005). Estimation and mapping of wet and dry mercury deposition across Northeastern North America. Ecotoxicology. 14, 53–70Google Scholar
  28. Moore R.B., Johnston C.M., Robinson K.W. and Deacon J. (2004). Estimation of total nitrogen and phosphorus in New England streams using spatially referenced regression models. USGS Open File Report 2004–5012. USGS, Washington D.CGoogle Scholar
  29. Munthe, J., Hultberg, H. 2004Mercury and methylmercury in runoff from a forested catchment – concentrations, fluxes, and their response to manipulationWater Air Soil Pollut. Focus460718Google Scholar
  30. Peckenham, J.M., Kahl, J.S., Mower, B. 2003Background mercury concentrations in river water in Maine U.S.A.Environ. Monitor. Assess.8912952Google Scholar
  31. Porvari, P., Verta, M., Munthe, J., Haapanen, M. 2003Forestry practices increase mercury and methylmercury output from boreal forest catchmentsEnviron. Sci. Technol.37238993PubMedGoogle Scholar
  32. Quémerais, B., Cossa, D., Rondeau, B., Pham, T.T., Gagnon, P., Fortin, B. 1999Sources and fluxes of mercury in the St. Lawrence RiverEnviron. Sci. Tech.338409Google Scholar
  33. Rea, A.W., Lindberg, S.E., Scherbatskoy, T., Keeler, G.J. 2002Mercury accumulation in foliage over time in two northern mixed hardwood forestsWater Air Soil Pollut.1334967Google Scholar
  34. Louis, V.L., Rudd, J.W.M., Kelly, C.A., Beaty, K.G., Bloom, N.S., Flett, R.J. 1994Importance of wetlands as sources of methyl mercury to boreal forest ecosystemsCan. J. Fish Aquat. Sci.51106576CrossRefGoogle Scholar
  35. Louis, V.L., Rudd, J.W.M., Kelly, C.A., Beaty, K.G., Flett, R.J., Roulet, N.T. 1996Production and loss of methylmercury and loss of total mercury from boreal forest catchments containing different types of wetlandsEnviron. Sci. Technol.30271929Google Scholar
  36. Louis, V.L., Rudd, J.W.M., Kelly, C.A., Bodaly, R.A., Paterson, M.J., Beaty, K.G., Hesslein, R.H., Heyes, A., Majewski, A. 2004The rise and fall of mercury methylation in an experimental reservoirEnviron. Sci. Technol.38134858Google Scholar
  37. Scherbatskoy, T., Shanley, J.B., Keeler, G.J. 1998Factors controlling mercury transport in an upland forested catchmentWater Air Soil Pollut.10542738Google Scholar
  38. Schwesig, D., Matzner, E. 2001Dynamics of mercury and methylmercury in forest floor and runoff of a forested watershed of central EuropeBiogeochemistry53181200Google Scholar
  39. Shanley, J.B. and Chalmers, A. (2002). Mercury and methylmercury dynamics in surface waters of the Lake Champlain basin [Abstract], Proc. Lake Champlain Research Consortium, 2002 Spring Symposium, May 20–23, St.-Jean, Québec, p. 43Google Scholar
  40. Shanley, J.B., Schuster, P.F., Reddy, M.M., Roth, D.A., Taylor, H.E., Aiken, G.R. 2002Mercury on the move during snowmelt in VermontEOS, Trans. Am. Geophys. Union83458CrossRefGoogle Scholar
  41. Sorensen, J.A., Glass, G.E., Schmidt, K.W., Huber, J.K., Rapp, G.R.,Jr. 1990Airborne mercury deposition and watershed characteristics in relation to mercury concentrations in water, sediments, plankton, and fish of eighty northern Minnesota lakesEnviron. Sci. Technol.24171627Google Scholar
  42. Watras, C.J., Morrison, K.A., Host, J.S., Bloom, N.S. 1995Concentration of mercury species in relationship to other site-specific factors in the surface waters of northern Wisconsin lakesLimnol. Oceangr.4055665CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • James B. Shanley
    • 1
  • Neil C. Kamman
    • 2
  • Thomas A. Clair
    • 3
  • Ann Chalmers
    • 1
  1. 1.U.S. Geological SurveyMontpelierUSA
  2. 2.Vermont Department of Environmental ConservationWaterbury
  3. 3.Environment CanadaSackville

Personalised recommendations