Advertisement

Ecotoxicology

, Volume 13, Issue 8, pp 797–806 | Cite as

Environmental Metabonomics: Applying Combination Biomarker Analysis in Earthworms at a Metal Contaminated Site

  • Jacob G. BundyEmail author
  • David J. Spurgeon
  • Claus Svendsen
  • Peter K. Hankard
  • Jason M. Weeks
  • Daniel Osborn
  • John C. Lindon
  • Jeremy K. Nicholson
Article

Abstract

Earthworms were taken across an environmental gradient of metal contamination for ecotoxicology assessment. Both indigenous (Lumbricus rubellusand L. terrestris) and introduced earthworms (Eisenia andrei, exposed in mesh bags) were studied. Changes in the levels of small molecule metabolites in earthworm tissue extracts were analysed by 1H NMR spectroscopy as a means of identifying combination biomarker compounds. Principal components analysis of the NMR spectral data revealed that biochemical changes were induced across the metal contamination gradient. Native worms (L. rubellus) from the most polluted sites were associated with an increase in the relative concentration of maltose; a decrease was also seen in the concentration of an as yet unidentified biomarker compound. Introduced worms (E. andrei) did not show differences to the same extent. Direct integration of the resonances from histidine and 1-methylhistidine showed that relative histidine concentrations were elevated slightly for L. rubellus, confirming the results of earlier mesocosm studies. Conversely, the relative concentrations of both histidine and 1-methylhistidine were greatly reduced by metal contamination in L. terrestris. This study demonstrates the utility of NMR spectroscopy in detecting previously unknown potential biomarkers for ecotoxicity testing and identified maltose as a potential biomarker compound deserving of further study.

Keywords

histidine maltose pattern recognition heavy metals NMR spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, S.M. 2001Biomarker/bioindicator response profiles of organisms can help differentiate between sources of anthropogenic stressors in aquatic ecosystemsBiomarkers63344Google Scholar
  2. Dastoli, F.R. 1964The intermediary carbohydrate metabolism of Lumbricus terrestrisJ. Cell. Comp. Physiol.64465472Google Scholar
  3. Depledge, M.H., Fossi, M.C. 1994The role of biomarkers in environmental assessment (2). InvertebratesEcotoxicology3161172Google Scholar
  4. Fan, T.W. 1996Metabolite profiling by one- and two-dimensional NMR analysis of complex mixturesProg. Nucl. Mag. Res. Sp.28161219Google Scholar
  5. Filzek, P., Spurgeon, D.J., Broll, G., Svendsen, C., Hankard, P., Kammenga, J.E., Weeks, J.M. 2004Pedological Characterization of sites along a transect from a primary cadmium/lead/zinc smelting worksEcotoxicology13725737Google Scholar
  6. Gibb, J.O.T., Svendsen, C., Weeks, J.M., Nicholson, J.K. 1997a1H NMR spectroscopic investigations of tissue metabolite biomarker response to Cu(II) exposure in terrestrial invertebrates: identification of free histidine as a novel biomarker of exposure to copper in earthwormsBiomarkers2295302Google Scholar
  7. Gibb, J.O.T., Holmes, E., Nicholson, J.K., Weeks, J.M. 1997bProton NMR spectroscopic studies on tissue extracts of invertebrate species with pollution indicator potentialComp. Biochem. Physiol.118B587598Google Scholar
  8. Grandjean, P., Brown, S.S., Reavey, P., Young, D.S. 1995Biomarkers in environmental toxicology: state of the artClin. Chem.4119021929Google Scholar
  9. Griffin, J.L., Walker, L.A., Garrod, S., Holmes, E., Shore, R.F., Nicholson, J.K. 2000NMR spectroscopy based metabonomic studies on the comparative biochemistry of the kidney and urine of the bank vole (Clethrionomys glareolus), wood mouse (Apodemus sylvaticus), white toothed shrew (Crocidura suaveolens) and the laboratory ratComp. Biochem. Physiol.127B357367Google Scholar
  10. Holmes, E., Nicholson, J.K., Nicholls, A.W., Lindon, J.C., Connor, S.C., Polley, S., Connelly, J. 1998The identification of novel biomarkers of renal toxicity using automatic data reduction techniques and PCA of proton NMR spectra of urineChemometr. Intell. Lab. Syst.44245255Google Scholar
  11. Kammenga, J.E., Dallinger, R., Donker, M.H., Köhler, H., Simonsen, V., Triebskorn, R., Weeks, J.M. 2000Biomarkers in terrestrial invertebrates for ecotoxicological soil risk assessmentRev. Environ. Contam. Toxicol.16493147Google Scholar
  12. Lagadic, L., Caquet, T. 1998Invertebrates in testing of enviromental chemicals: are they alternatives?Environ. Health Perspect.106593611Google Scholar
  13. Laskowski, R, Hopkin, S.P. 1996Effect of Zn, Cu, Pb, and Cd on fitness in snails (Helix aspersa) EcotoxicolEnnviron. Safety345969Google Scholar
  14. Lindon, J.C., Nicholson, J.K., Holmes, E., Everett, J.R. 2000Metabonomics: metabolic processes studied by NMR spectroscopy of biofluidsConcept Magnetic Res12289320Google Scholar
  15. Morgan, J.E., Morgan, A.J. 1999The accumulation of metals (Cd, Cu, Pb, Zn and Ca) by two ecologically contrasting earthworm species (Lumbricus rubellus and Aporrectodea caliginosa): implications for ecotoxicological testingAppl. Soil Ecol.13920Google Scholar
  16. Morgan, J.E., Morgan, A.J. 1993Seasonal changes in the tissue-metal (Cd, Zn and Pb) concentrations in two ecophysiologically dissimilar earthworm species–pollution-monitoring implicationsEnviron. Poll.8217Google Scholar
  17. Nicholson, J.K., Buckingham, M.J., Sadler, P.J. 1983High resolution 1H NMR studies of vertebrate blood and plasmaBiochem. J.211605615Google Scholar
  18. Nicholson, J.K., Wilson, I.D. 1989High resolution proton magnetic resonance spectroscopy of biological fluidsProg. NMR Spect.21449501Google Scholar
  19. Peakall, D.B. 1994The role of biomarkers in environmental assessment (1). IntroductionEcotoxicology3157160Google Scholar
  20. Phalaraksh, C., Lenz, E.M., Lindon, J.C., Nicholson, J.K., Farrant, R.D., Reynolds, S.E., Wilson, I.D., Osborn, D., Weeks, J.M. 1999NMR spectroscopic studies on the haemolymph of the tobacco hornworm, Manduca sexta: assignment of 1H and 13C NMR spectraInsect Biochem. Mol. Biol.29795805Google Scholar
  21. Prentø, P. 1987Blood sugar, sugar metabolism, and related enzymes in the earthworm, Lumbricus terrestris LComp. Biochem. Physiol.86B333341Google Scholar
  22. Scheer, B.T. 1969Carbohydrates and carbohydrate metabolism: Annelida, Sipuncula, EchiuridaFlorkin, M.Scheer, B.T. eds. Chemical Zoology IVAcademic PressNew YorkGoogle Scholar
  23. Scott, A., Clarke, R. 2000Multivariate techniquesSparks, T. eds. Statistics in EcotoxicologyWileyChichester148178Google Scholar
  24. Spurgeon, D.J., Hopkin, S.P. 1999Seasonal variation in the abundance, biomass and biodiversity of earthworms in soils contaminated with metal emissions from a primary smelting worksJ. Appl. Ecol.36173183Google Scholar
  25. Spurgeon, D.J., Svendsen, C., Rimmer, V.R, Hopkin, S.P., Weeks, J.M. 2000Relative sensitivity of life-cycle and biomarker responses in four earthworm species exposed to zincEnviron. Toxicol. Chem.1918001808Google Scholar
  26. Warne, M.A., Lenz, E.M., Osborn, D., Weeks, J.M., Nicholson, J.K. 1999An NMR-based metabonomic investigation of the toxic effects of 3-trifluoromethyl-aniline on the earthworm Eisenia venetaBiomarkers55672Google Scholar
  27. Weeks, J.M., Spurgeon, D.J., Svendsen, C., Hankard, P., Kammenga, J.E., Dallinger, R., Köhler, H.-R., Simonsen, V., Scott-Fordsmand, J. 2004Critical analysis of soil invertebrate biomarkers: a field case study in avonmouth, UKEcotoxicology13819824Google Scholar
  28. Wold, S., Esbensen, K., Geladi, P. 1987Principal components analysisChemometr. Intell. Lab. Syst.23752Google Scholar

Copyright information

© Kluwer Academic Publishers 2005

Authors and Affiliations

  • Jacob G. Bundy
    • 1
    Email author
  • David J. Spurgeon
    • 2
  • Claus Svendsen
    • 2
  • Peter K. Hankard
    • 2
  • Jason M. Weeks
    • 2
    • 3
  • Daniel Osborn
    • 2
  • John C. Lindon
    • 1
  • Jeremy K. Nicholson
    • 1
  1. 1.Biological Chemistry, Biomedical Sciences DivisionImperial College of Science, Technology and MedicineLondonUK
  2. 2.Centre for Ecology and HydrologyHuntingdonUK
  3. 3.Centre for Environment, Fisheries and Aquaculture Sciences (CEFAS)SuffolkUnited Kingdom

Personalised recommendations