, Volume 13, Issue 7, pp 683–695 | Cite as

Does the Environment or the Source of the Population Define Stress Status and Energy Supply in the Freshwater Amphipod, Gammarus fossarum?

  • Ralph O. Schill
  • Heinz-R. Köhler


To investigate the effects of acclimation and/or adaptation on the stress protein (hsc/hsp70) response, adenylate energy charge (ACE), ATP/ADP ratio and both lipid and glycogen supply, specimens of four different populations of the freshwater amphipod Gammarus fossarum (Koch, 1835) were transplanted and exposed at sites with various levels of pollution. Induction of the stress protein response was highest in those gammarids transplanted from nearly unpolluted or just moderately polluted sites to severely polluted stream portions. The lowest hsc/hsp70 levels were found in animals transplanted from the polluted sites to the less polluted sites. In all cases the adenylic energy charge (AEC) and ATP/ADP ratio did not show any deficiency in the cellular energy supply. The amount of energy storage substrates, lipid droplets and glycogen in the hepatopancreas, the main metabolic tissue, was similar in all resident populations. In all these amphipod populations, tolerant phenotypes which had diverged genetically were not revealed; rather, the stress and recovery effects derived from the physiologically regulated, cellular stress response.


heat-shock protein stream pollution tolerance adenylate energy charge 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, S.M. 1990Status and use of biological indicators for evaluating the effects of stress on fishAm. Fisheries Symp.818Google Scholar
  2. Adam, S., Pawert, M., Lehmann, R., Roth, B., Müller, E., Triebskorn, R. 2001Physiochemical and morphological characterization of two small polluted streams in southwest GermanyJ. Aquat. Ecosyst. Stress. Recov.817994Google Scholar
  3. Adams, M., Savino, E., Freeman, M. 1994Timing and induction of hsp70 production in Clamydomonas reinhardtiiBiol. Bratislava496238Google Scholar
  4. Arts, M.-J., Schill, R.O., Knigge, T., Eckwert, H., Kammenga, J.E., Köhler, H.-R. 2004Stress proteins (hsp70, hsp60) induced in isopods and nematods by field exposure to metals in a gradient near Avonmouth, UKEcotoxicology1373955Google Scholar
  5. Atkinson, D.E. 1977Cellular Energy Metabolism and Its RegulationAcademic Press IncNew YorkGoogle Scholar
  6. Bradford, M.M. 1976A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye bindingAnal. Biochem.7224854CrossRefPubMedGoogle Scholar
  7. Bradley, B.P. 1986Genetic expression of temperature tolerance in the copepod Eurytemora affinis in different salinity and temperature environmentsMar. Biol.915615Google Scholar
  8. Cattani, O., Serra, R., Isani, G., Raggi, G., Cortesi, P., Carpene, E. 1996Correlation between metallothionein and energy metabolism in sea bass, Dicentrarchus labrax, exposed to cadmiumComp. Biochem. Physiol.113C1939Google Scholar
  9. Cortesi, P., Cattani, O., Vitali, G., Carpenè, E., Zwaan, A., Thillart, G., Roos, J., Lieshout, G., Weber, R.E. 1992Physiological and biochemical responses of bivalve Scapharca inaequivalis to hypoxia and calcium exposure: erythrocytes versus other tissues.Vollenweider, R.A.Marchetti, R.Viviani, R. eds. Marine Costal EutrophycationElsevierAmsterdam104153Google Scholar
  10. Daddi, L. 1896Nouvelle methode pour colorer la graisse dans les tissusArch. Ital. Biol.261426Google Scholar
  11. Donker, M.H. 1992Energy reserves and distribution of metals in populations of the isopod Porcellio scaber from metal-contaminated sitesFunct. Ecol.644554Google Scholar
  12. Dunlap, D.Y., Matsumura, F. 1997Development of broad spectrum antibodies to heat shock protein 70s as biomarkers for detection of multiple stress by pollutants and environmental factorsEcotox. Environ. Saf.3723844Google Scholar
  13. Eckwert, H., Köhler, H.-R. 1997The indicative value of the hsp70 stress response as a biomarker for metal effects in Oniscus asellus (Isopoda) filed populations: variability between populations from metal-polluted and uncontaminated sitesAppl. Soil Ecol.627582Google Scholar
  14. Eckwert, H., Alberti, G., Köhler, H.-R. 1997The induction of stress proteins (hsp) in Oniscus asellus (Isopoda) as a molecular marker of multiple heavy metal exposure: I. Principles and toxicological assessmentEcotoxicology624962Google Scholar
  15. Edley, M.T., Law, R. 1988Evolution of life histories and yields in experimental populations of Daphnia magnaBiol. J. Linn. Soc.3430926Google Scholar
  16. Feder, M.E., Hofmann, G.E. 1999Heat-shock proteins, molecular chaperones and the stress response: Evolutionary and ecological physiologyAnnu. Rev. Physiol.6124382Google Scholar
  17. Gething, M.-J., Sambrook, J. 1992Protein folding in the cellNature (Lond.)3553345Google Scholar
  18. Giesy, J.P. 1988Phosphoadenylate concentrations and adenylate energy charge of largemouth bass (Micropterus salmoides): Relationship with condition factor and blood cortisolComp. Biochem. Physiol.90A36777Google Scholar
  19. Hakimzadeh, R., Bradley, B.P. 1990The heat shock response in the copepod Eurytemora affinis (Poppe)J. Therm. Biol.156777Google Scholar
  20. Hampp, R. 1985ADP and AMP, luminometric methodBergmeyer, J.Graßl, M. eds. Methods in enzymatic analysis VIIVerlag ChemieWeinheim3709Google Scholar
  21. Hawkes, H.A. 1979Invertebrates as indicators of river water qualityJames, A.Evison, L. eds. Biological Indicators of Water QualityWileyNew YorkGoogle Scholar
  22. Haya, K., Waiwood, B.A. 1983Adenylate energy charge and ATPase activity: potential biochemical indicators of sublethal effects caused by pollutants in aquatic animalsAquat. Toxicol.1330733Google Scholar
  23. Haya, K., Waiwood, B.A., Johnston, D.W. 1983Adenylate energy charge and ATPase activity of lobster (Homarus americanus) during sublethal exposure to zincAquat. Toxicol.311526Google Scholar
  24. Hemelraad, J., Herwig, H.J., Donselaar, E.G., Holwerda, D.A., Zandee, D.I. 1990Effects of cadmium in freshwater clams. III. Interaction with energy metabolism in Anodonta cygnea.Arch. Environ. Contam. Toxicol19699703Google Scholar
  25. Hershko, A. 1988Ubiquitin-mediated protein degradationJ. Biol. Chem.2631523740Google Scholar
  26. Hightower, L.E. 1991Heat-shock, stress-proteins, chaperones and proteotoxicityCell661917Google Scholar
  27. Honnen, W., Rath, K., Schlegel, T., Schwinger, A., Frahne, D. 2001Chemical analyses of water, sediment and biota in two small streams in southwest GermanyJ. Aquat. Ecosyst. Stress. Recov.8195213Google Scholar
  28. Indeherberg, M.B.M., van Staalen, N.M., Schockaert, E.R. 1999Combining life-history and toxicokinetic parameters to interpret differences in sensitivity to cadmium between populations of Polycelis tenius (Plathelminthes)Ecotox. Environ. Saf.44111Google Scholar
  29. Klerk, P.L., Weiss, J.S. 1987Genetic adaptation to heavy metals in aquatic organisms: a reviewEnviron. Pollut.45173205Google Scholar
  30. Kluytmans, J.H., Zandee, D.I. 1983Comparative study of formation and excretion of anaerobic fermentation products in bivalves and gastropodsComp. Biochem. Physiol.75B72932Google Scholar
  31. Kooijman, S.A.L.M., Metz, J.A.J. 1984On the dynamics of chemically stressed populations: the deduction of population consequences from effects on individualsEcotox. Environ. Saf.825474Google Scholar
  32. Korhonen, I.A., Lagerspetz, K.Y.H. 1996Heat shock response and thermal acclimation in Asellus aquaticusJ. Therm. Biol.214956Google Scholar
  33. Köhler, H.-R., Eckwert, H. 1997The induction of stress proteins (hsp70) in Oniscus asellus (Isopoda) as a molecular marker of multiple heavy-metal exposure. II. Joint toxicity and transfer to field situations.Ecotoxicology626374Google Scholar
  34. Köhler, H.-R., Triebskorn, R., Stöcker, W., Kloetzel, P.-M., Alberti, G. 1992The 70 kD heat shock protein (hsp70) in soil invertebrates: a possible tool for monitoring environmental toxicantsArch. Environ. Contamin. Toxicol.223348Google Scholar
  35. Köhler, H.-R., Knödler, C., Zanger, M. 1999Divergent kinetics of hsp70 induction in Oniscus asellus (Isopoda) in response to four environmentally relevant organic chemicals (B(a)P, PCB52; γ-HCH, PCB); suitability and limits of a biomarkerArch. Environ. Contamin. Toxicol.3617985Google Scholar
  36. Köhler, H.-R., Zanger, M., Eckwert, H., Einfeld, I. 2000Selection favours low hsp70 levels in chronically metal-stressed soil arthropodsJ. Evol.1356982Google Scholar
  37. Köhler, H.-R., Bartussek, C., Eckwert, H., Farian, K., Gränzer, S., Knigge, T., Kunz, N. 2001The hepatic stress protein (hsp70) response to interacting abiotic parameters in fish exposed to various levels of pollutionJ. Aquat. Ecosyst. Stress. Recov.824160Google Scholar
  38. Levy, R., Miller, T.W. 1982Effects of chloride concentration of some mosquito habitats of southwest Florida on the planarian Dugesia dorotocephalaProc. Fla. Mosq. Control Assoc.20203Google Scholar
  39. Lijklema, L., Roijackers, R.M.M., Cuppen, J.G.M. 1988Biological assessment of effects of combined sewer overflows and storm water discharges. Proc. Int. Symp. Hydrological Processes and Water Management in Urban Areas.The Netherlands: IHP/UNESCOInGoogle Scholar
  40. Lis, J., Wu, C. 1993Protein traffic on the heat-shock promotor: parking, stalling and trucking alongCell7414Google Scholar
  41. Marazza, D., Bornens, Ph., Le Gal, Y. 1996Effect of ammonia on survival and adenylate energy charge in the shrimp Palaemonetes variansEcotox. Environ. Saf.341038Google Scholar
  42. McLennan, A.G., Miller, D. 1990A biological role for the heat shock response in crustaceansJ. Therm. Biol.15616Google Scholar
  43. Miller, D., McLennan, A.G. 1987Synthesis of heat shock proteins and thermotolerance in Artemia cysts and larvae.Decleir, W.Moens, L.Siegers, H.Jaspers, E.Sorgeloos, P. eds. Artemia and its Applications, Vol. 2. Physiology, Biochemistry and Molecular Biology.Universal PressWetterenGoogle Scholar
  44. Miller, D., McLennan, A.G. 1988aThe heat shock response of the cryptobiotic shrimp Artemia. I. A comparison of the thermotolerance of cysts and larvae.J. Therm. Biol.1311923Google Scholar
  45. Miller, D., McLennan, A.G. 1988bThe heat shock response of the cryptobiotic shrimp Artemia. II. Heat shock proteins.J. Therm. Biol.1312534Google Scholar
  46. Morimoto, R.I., Tissières, A., Georgopoulus, C. 1994The Biology of Heat Shock Proteins and Molecular ChaperonesCold Spring Harbor Laboratory Press, Cold Spring HaborNew YorkGoogle Scholar
  47. Mulliss, R.M. (1994). The ecotoxicological impacts of urban discharges. Ph.D. thesis, Urban Pollution Research Center, Middlesex University, U.K.Google Scholar
  48. Naylor, C., Maltby, L., Calow, P. 1989Scope for growth in Gammarus pulex, a freshwater benthic detritivoreHydrobiologia188/18951723Google Scholar
  49. Postma, J.F. (1995). Adaptation to Metals in the Midge Chironimus riparius. Ph.D. thesis. University of Amsterdam, The NetherlandsGoogle Scholar
  50. Postma, J.F., Davids, C. 1995Tolerance induction and life-cycle changes in cadmium exposed Chironomus riparius (Diptera) during consecutive generationsEcotox. Environ. Saf.30195202Google Scholar
  51. Rainbow, P.S., Phillips, D.J.H., Depledge, M.H. 1990The significance of trace metal concentrations in marine invertebrates: a need for laboratory investigation of accumulation strategiesMar. Pollut. Bull.213214Google Scholar
  52. Ritterhoff, J., Zauke, G.-P., Dallinger, R. 1996Calibration of the estuarine amphipods, Gammarus zaddachi Sexton (1912), as biomonitors: toxicokinetics of cadmium and possible role of inducible metal-binding proteins in Cd detoxificationAquat. Toxicol.3435169Google Scholar
  53. Rivera, V.R., Perich, M.J. 1994Effects of water quality on survival and reproduction of four species of planaria (Turbellaria: Triclida)Invertebr. Reprod. Dev.2517Google Scholar
  54. Rutherford, S.L., Zucker, C.S. 1994Protein folding and the regulation of signalling pathwaysCell79112932Google Scholar
  55. Sanders, B.M. 1993Stress proteins in aquatic organisms: an environmental perspectiveCrit. Rev. Toxicol.234975Google Scholar
  56. Schill, R.O., Gayle, P.M.H., Köhler, H.-R. 2002Daily stress protein (hsp70) cycle in chitons (Acanthopleura granulata Gmelin, 1791) which inhabit the rocky intertidal shoreline in a tropical ecosystemComp. Biochem. Physiol.131C2538Google Scholar
  57. Schill, R.O., Köhler, H.-R. 2004Energy reserves and metal-storage granules in the hepatopancreas of Oniscus asellus and Porcellio scaber (Isopoda) from a metal gradient at Avonmouth, UKEcotoxicology1378796Google Scholar
  58. Schirf, V.R., Turner, P., Selby, L., Hannapel, C., Cruz, P., Dehn, P.F. 1987Nutritional status and energy metabolism of crayfish (Procambarus clarkii, Girard) muscle and hepatopancreasComp. Biochem. Physiol.88A3836Google Scholar
  59. Singh, I. 1964A modification of the Masson-Hamperl method for staining of argentaffin cellsAnat. Anz.115812Google Scholar
  60. Spry, D.J., Wiener, J.G. 1991Metal bioavailability and toxicity to fish in low-alkalinity lakes; a critical reviewJ. Environ Poll.71243305Google Scholar
  61. Steinberg, Y. 1989Energy and protein budgets in the desert isopod Hemilepistus reaumuriActa Oecologia-Oecologia Generalis1011734Google Scholar
  62. Sylvestre, C. (1988). La charge énergétique adenylique : Possibilités d′ utilisation dans la gestion de l′environnement marin. PhD thesis; University of Western Brittany, Brest, FranceGoogle Scholar
  63. Triebskorn, R., Köhler, H.-R. 1996The impact of heavy metals on the grey garden slug, Deroceras reticulatum (Müller): metal storage, cellular effects and semi-quantitative evaluation on metal toxicityEnviron. Pollut.9332743Google Scholar
  64. van Capelleveen, H.E. (1987). Ecotoxicology of heavy metals for terrestrial isopods. PhD thesis; Vrije Universiteit, Amsterdam, The Netherlands.Google Scholar
  65. Hattum, B., Korthals, G., Straalen, N.M., Govers, H.A.J., Joosse, E.N.G. 1993Accumulation patterns of trace metals in freshwater isopods in sediment bioassays–influence of substrate characteristics, temperature and pHWat. Res.2766984Google Scholar
  66. Werner, I., Nagel, R. 1997Stress proteins hsp60 and hsp70 in three species of amphipods exposed to cadmium, diazinon, dieldrin and fluorantheneEnviron. Toxicol. Chem.162393403Google Scholar
  67. Zaroogian, G.E., Gentile, J.H., Heltshe, J.F., Johnson, M., Ivanovici, A.M. 1982Application of adenine nucleotide measurements fot the evaluation of stress in Mytilus edulis and Crassostrea virginicaComp. Biochem. Physiol.716439Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Ralph O. Schill
    • 1
  • Heinz-R. Köhler
    • 1
  1. 1.Animal Physiological Ecology, Zoological InstituteUniversity of TübingenTübingenGermany

Personalised recommendations