Advertisement

Stomach content and stable isotopes reveal an ontogenetic dietary shift of young-of-the-year scalloped hammerhead sharks (Sphyrna lewini) inhabiting coastal nursery areas

  • Alejandro Rosende-Pereiro
  • Juan Ramón Flores-Ortega
  • Gaspar González-Sansón
  • Antonio CorgosEmail author
Article

Abstract

Sphyrna lewini is a placental viviparous shark that uses coastal nursery areas in Jalisco, Mexico, where pups stay 4–12 months. Changes in size or swimming speed may be reflected in diet composition. The main objectives of this study were as follows: (1) analyze the differences in trophic ecology of juvenile S. lewini from coastal nursery areas of Jalisco by sex and size, through stomach content and stable isotope analyses; and (2) analyze changes in muscle and liver δ15N and δ13C values with shark size. Samples were collected from the artisanal fishery from September 2013 to December 2016. Three size classes were compared: neonates, stretched total length (STL) ≤ 75 cm, and STL > 75 cm (75–100 cm). Bony fishes were the most important group in all size classes, and the importance of shrimps decreased with STL. Significant differences in diet composition were found between neonates and STL > 75 cm, which showed the lowest niche overlap (0.32). STL ≤ 75 cm showed the largest niche width (0.75). The δ15N muscle and liver values declined with total length, reflecting the maternal isotopic signal. No differences in liver δ13C values were observed among size classes, but larger size class showed higher muscle δ13C values. Both isotope and stomach content analyses classified all sharks as tertiary consumers, but the trophic position (TP) estimated using δ15N was higher in neonates. No significant differences in the diet and TP were observed between sexes. The liver C:N ratio decreased sharply with STL up to 55 cm, from which increased smoothly, reflecting the lipid reserves consumed during their neonatal stage.

Keywords

Feeding Maternal isotopic signal Sphyrnidae Trophic ecology Juvenile 

Notes

Acknowledgments

We are grateful to the fishermen of the cooperatives of the south coast of Jalisco, especially those in San Patricio-Melaque and Barra de Navidad, for their collaboration to obtain the specimens for this study. To Valeria Molina and all the students and volunteers that helped with the field and lab work.

Funding information

Funds for this project were provided by the Universidad de Guadalajara.

References

  1. Alejo-Plata C, Ramos-Carrillo S and Cruz-Ruiz JL (2006) La pesquería artesanal del tiburón en Salina Cruz, Oaxaca, México. Ciencia y Mar 30: 37–51.Google Scholar
  2. Alonso MK, Crespo EA, García NA, Pedraza SN, Mariotti PA, Mora NJ (2002) Fishery and ontogenetic driven changes in the diet of the spiny dogfish, Squalus acanthias, in Patagonian waters, Argentina. Environ Biol Fishes 63:193–202CrossRefGoogle Scholar
  3. Anislado-Tolentino V (2008) Demografía y pesquería del tiburón martillo, Sphyrna lewini, (Griffith y Smith, 1834) (Pisces: Elasmobranchii) en dos provincias oceanográficas del Pacífico mexicano. Dissertation, Universidad Nacional Autónoma de México.Google Scholar
  4. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917PubMedCrossRefPubMedCentralGoogle Scholar
  5. Borrell A, Cardona L, Kumarran RP, Aguilar A (2011) Trophic ecology of elasmobranchs caught off Gujarat, India, as inferred from stable isotopes. ICES J Mar Sci 68:547–554.  https://doi.org/10.1093/icesjms/fsq170 CrossRefGoogle Scholar
  6. Brown SC, Bizzarro JJ, Cailliet GM, Ebert DA (2012) Breaking with tradition: redefining measures for diet description with a case study of the Aleutian skate Bathyraja aleutica (Gilbert 1896). Environ Biol Fishes 95:3–20.  https://doi.org/10.1007/s10641-011-9959-z CrossRefGoogle Scholar
  7. Bush A (2003) Diet and diel feeding periodicity of juvenile scalloped hammerhead sharks, Sphyrna lewini, in Kāne´ohe Bay, Ō´ahu, Hawai´i. Environ Biol Fishes 67:1–11CrossRefGoogle Scholar
  8. Carlisle AB, Kim SL, Semmens BX, Madigan DJ, Jorgensen SJ, Perle CR, Anderson SD, Chapple TK, Kanive PE, Block BA (2012) Using stable isotope analysis to understand the migration and trophic ecology of northeastern Pacific white sharks (Carcharodon carcharias). PLoS One.  https://doi.org/10.1371/journal.pone.0030492 PubMedPubMedCentralCrossRefGoogle Scholar
  9. Carlson JK, Ribera MM, Conrath CL, Heupel MR, Burgess GH (2010) Habitat use and movement patterns of bull sharks Carcharhinus leucas determined using pop-up satellite archival tags. J Fish Biol 77:661–675.  https://doi.org/10.1111/j.1095-8649.2010.02707.x CrossRefPubMedPubMedCentralGoogle Scholar
  10. Caut S, Jowers MJ, Michel L, Lepoint G, Fisk AT (2013) Diet-and tissue-specific incorporation of isotopes in the shark Scyliorhinus stellaris, a North Sea mesopredator. Mar Ecol Prog Ser 492:185–198.  https://doi.org/10.3354/meps10478 CrossRefGoogle Scholar
  11. Cherel Y, Koubbi P, Giraldo C, Penot F, Tavernier E, Moteki M, Ozouf-Costaz C, Causse R, Chartier A, Hosie G (2011) Isotopic niches of fishes in coastal, neritic and oceanic waters off Adélie land, Antarctica. Polar Sci 5:286–297CrossRefGoogle Scholar
  12. Christensen V, Pauly D (1992) ECOPATH II - a software for balancing steady-state ecosystem models and calculating network characteristics. Ecol Modell 61:169–185CrossRefGoogle Scholar
  13. Clarke TA (1971) The Ecology of the Scalloped Hammerhead Shark, Sphyrna lewini, in Hawaii. Pacific Sci 25:133–144Google Scholar
  14. Colwell RK (2013) EstimateS: statistical estimation of species richness and shared species from samples.Google Scholar
  15. Compagno LJ V. (1984) Sharks of the world. An annotated and illustrated catalogue of shark species known to date. Vol. 4, Part 2. FAO species catalogue. FAO Fisheries Synopsis, Roma, pp 251–655Google Scholar
  16. Corgos A, Rosende-Pereiro A, Lucano C (2016) Assessment of sampling methodology for ecology studies of young of the year scalloped hammerhead (Sphyrna lewini) in coastal areas. Cienc Pesq 24:67–76Google Scholar
  17. Cortes E (1999) Standardized diet compositions and trophic levels of sharks. ICES J Mar Sci 56:707–717CrossRefGoogle Scholar
  18. Cresson P, Ruitton S, Ourgaud M, Harmelin-Vivien M (2014) Contrasting perception of fish trophic level from stomach content and stable isotope analyses: a Mediterranean artificial reef experience. J Exp Mar Bio Ecol 452:54–62.  https://doi.org/10.1016/j.jembe.2013.11.014 CrossRefGoogle Scholar
  19. Daly R, Froneman PW, Smale MJ (2013) Comparative feeding ecology of bull sharks (Carcharhinus leucas) in the coastal waters of the southwest Indian Ocean inferred from stable isotope analysis. PLoS One 8:1–11.  https://doi.org/10.1371/journal.pone.0078229 CrossRefGoogle Scholar
  20. Dowd WW, Brill RW, Bushnell PG, Musick JA (2006) Estimating consumption rates of juvenile sandbar sharks (Carcharhinus plumbeus) in Chesapeake Bay, Virginia, using a bioenergetics model. Fish Bull 104:332–342Google Scholar
  21. Duncan K, Holland K (2006) Habitat use, growth rates, and dispersal patterns of juvenile scalloped hammerhead sharks Sphyrna lewini in a nursery habitat. Mar Ecol Prog Ser 312:211–221CrossRefGoogle Scholar
  22. Ebert DA (2002) Ontogenetic changes in the diet of the sevengill shark (Notorynchus cepedianus). Mar Freshw Res 53:517–523.  https://doi.org/10.1071/MF01143 CrossRefGoogle Scholar
  23. Ebert DA, Bizzarro JJ (2007) Standardized diet compositions and trophic levels of skates (Chondrichthyes: Rajiformes: Rajoidei). Environ Biol Fishes 80:221–237.  https://doi.org/10.1007/s10641-007-9227-4 CrossRefGoogle Scholar
  24. Estrada JA, Rice AN, Lutcavage ME, Skomal GB (2003) Predicting trophic position in sharks of the north-west Atlantic Ocean using stable isotope analysis. J Mar Biol Assoc UK 83:1347–1350CrossRefGoogle Scholar
  25. Flores-Martínez IA, Torres-Rojas YE, Galván-Magaña F and Ramos-Miranda J (2016) Diet comparison between silky sharks (Carcharhinus falciformis) and scalloped hammerhead sharks (Sphyrna lewini) off the south-west coast of Mexico. J Mar Biol Assoc United Kingdom 1–9.Google Scholar
  26. Funes M, Irigoyen AJ, Trobbiani GA, Galván DE (2018) Stable isotopes reveal different dependencies on benthic and pelagic pathways between Munida gregaria ecotypes. Food Webs 16.  https://doi.org/10.1016/j.fooweb.2018.e00101 CrossRefGoogle Scholar
  27. Furlong-Estrada E, Tovar-Ávila J, Pérez-Jiménez JC, Ríos-Jara E (2015) Resilence of Sphyrna lewini, Rhizoprionodon longurio, and Carcharhinus falciformis at the entrance to the Gulf of California after three decades of exploitation. Cienc Mar 41(1):49–63.  https://doi.org/10.7773/cm.v41i1.2442 CrossRefGoogle Scholar
  28. Garvey JE, Whiles MR (2017) Trophic ecology. CRC Press, Boca Ratón, FloridaGoogle Scholar
  29. Gilmore RG, Dodrill JW, Linley PA (1983) Reproduction and embryonic development of the sand tiger shark Odontaspis taurus (Rafinesque). Fish Bull 81:201–226Google Scholar
  30. Grossman GD (1986) Food resource partitioning in a rocky intertidal fish assemblage. J Zool 1:317–355CrossRefGoogle Scholar
  31. Hammerschlag N, Ovando D, Serafy JE (2010) Seasonal diet and feeding habits of juvenile fishes foraging along a subtropical marine ecotone. Aquat Biol 9:279–290.  https://doi.org/10.3354/ab00251 CrossRefGoogle Scholar
  32. Hill JM, McQuaid CD, Kaehler S (2006) Biogeographic and nearshore-offshore trends in isotope ratios of intertidal mussels and their food sources around the coast of southern Africa. Mar Ecol Prog Ser 318:63–73CrossRefGoogle Scholar
  33. Hoffmayer ER, Parsons GR (2003) Food habits of three shark species from the Mississippi sound in the northern Gulf of Mexico. Southeast Nat 2(2):271–280CrossRefGoogle Scholar
  34. Hussey NE, Brush J, McCarthy ID, Fisk AT (2010a) δ15N and δ13C diet-tissue discrimination factors for large sharks under semi-controlled conditions. Comp Biochem Physiol 155:445–453.  https://doi.org/10.1016/j.cbpa.2009.09.023 CrossRefGoogle Scholar
  35. Hussey NE, DiBattista JD, Moore JW, Ward EJ, Fisk AT, Kessel ST, Feldheim KA, Gruber SH, Guttridge TL, Weideli OC et al (2017) Risky business for a juvenile marine predator? Testing the influence of foraging strategies on size and growth rate under natural conditions. Proc Biol Sci.  https://doi.org/10.6084/m9.figshare.c.3723955
  36. Hussey NE, Dudley SFJ, Mccarthy ID, Cliff G, Fisk AT (2011) Stable isotope profiles of large marine predators: viable indicators of trophic position, diet and movement in sharks? Can J Fish Aquat Sci 68:2029–2045.  https://doi.org/10.1139/2011-115 CrossRefGoogle Scholar
  37. Hussey NE, MacNeil MA, Olin JA, McMeans BC, Kinney MJ, Chapman DD, Fisk AT (2012a) Stable isotopes and elasmobranchs: tissue types, methods, applications, and assumptions. J Fish Biol 80:1449–1484.  https://doi.org/10.1111/j.1095-8649.2012.03251.x CrossRefPubMedGoogle Scholar
  38. Hussey NE, Olin JA, Kinney MJ, McMeans BC, Fisk AT (2012b) Lipid extraction effects on stable isotope values (δ13C and δ15N) of elasmobranch muscle tissue. J Exp Mar Bio Ecol 434–435:7–15.  https://doi.org/10.1016/j.jembe.2012.07.012 CrossRefGoogle Scholar
  39. Hussey NE, Wintner SP, Dudley SFJ, Cliff G, Cocks DT, MacNeil MA (2010b) Maternal investment and size-specific reproductive output in carcharhinid sharks. J Anim Ecol 79:184–193.  https://doi.org/10.1111/j.1365-2656.2009.01623.x CrossRefPubMedGoogle Scholar
  40. Hyslop EJ (1980) Stomach contents analysis - a review of methods and their application. J Fish Biol 17:411–429CrossRefGoogle Scholar
  41. Iverson SJ, Lang SL, Cooper MH (2001) Comparison of the Bligh and Dyer and Folch methods for total lipid determination in a broad range of marine tissue. Lipids 36:1283–1287PubMedCrossRefPubMedCentralGoogle Scholar
  42. Jackson AL, Inger R, Parnell AC, Bearhop S (2011) Comparing isotopic niche widths and within communities: SIBER - Stable Isotope Bayesian Ellipses in R. J Anim Ecol 80:595–602.  https://doi.org/10.1111/j.1365-2656.2011.01806.x CrossRefPubMedPubMedCentralGoogle Scholar
  43. Jackson MC, Donohue I, Jackson AL, Britton JR, Harper DM, Grey J (2012) Populations-level metrics of trophic structure based on stable isotopes and their application to invasion ecology. PLoS One 7:e31757.  https://doi.org/10.1371/journal.pone.0031757 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Jayasinghe C, Gotoh N, Tokairin S, Ehara H, Wada S (2003) Inter species changes of lipid compositions in liver of shallow-water sharks from the Indian Ocean. Fish Sci 69:644–653CrossRefGoogle Scholar
  45. Kinney MJ, Hussey NE, Fisk AT, Tobin AJ, Simpfendorfer CA (2011) Communal or competitive? Stable isotope analysis provides evidence of resource partitioning within a communal shark nursery. Mar Ecol Prog Ser 439:263–276CrossRefGoogle Scholar
  46. Knip DM, Heupel MR, Simpfendorfer CA, Tobin AJ, Moloney J (2011) Ontogenetic shifts in movement and habitat use of juvenile pigeye sharks Carcharhinus amboinensis in a tropical nearshore region. Mar Ecol Prog Ser 425:233–246.  https://doi.org/10.3354/meps09006 CrossRefGoogle Scholar
  47. Kolasinski J, Frouin P, Sallon A, Rogers K, Bruggemann HJ, Potier M (2009) Feeding ecology and ontogenetic dietary shift of yellowstripe goatfish Mulloidichthys flavolineatus (Mullidae) at Reunion Island, SW Indian ocean. Mar Ecol Prog Ser 386:181–195.  https://doi.org/10.3354/meps08081 CrossRefGoogle Scholar
  48. Kozak ER, Franco-Gordo C, Godínez-Domínguez E, Suárez-Morales E, Ambriz-Arreola I (n.d.) Stable isotope (δ15N, δ13C) and niche size variability of tropical calanoid copepods and zooplankton fractions in response to seasonal hydrographic processes. Mar BiolGoogle Scholar
  49. Krebs CJ (1999) Ecological Methodology, 2nd edn. Benjamin Cummings, Menlo Park 620 ppGoogle Scholar
  50. Labropoulou M, Machias A, Tsimenides N (1999) Habitat selection and diet of juvenile red porgy, Pagrus pagrus. Fish Bull 97:495–507Google Scholar
  51. Layman CA, Arrington DA, Montaña CG, Post DM (2007) Can stable isotope ratios provide for community-wide measures of trophic structure? Ecology 88:42–48PubMedCrossRefGoogle Scholar
  52. Layman CA, Araujo MS, Boucek R, Hammerschlag-Peyer CM, Harrison E, Jud ZR, Matich P, Rosenblatt AE, Vaudo JJ, Yeager LA, Post DM, Bearhop S (2012) Applying stable isotopes to examine food-web structure: an overview of analytical tools. Biol Rev 87(3):545–562.  https://doi.org/10.1111/j.1469-185X.2011.00208.x CrossRefPubMedGoogle Scholar
  53. Liu KM, Chen CT (1999) Demographic analysis of the Scalloped Hammerhead, Sphyrna lewini, in the northwestern Pacific. Fish Sci 65:218–223CrossRefGoogle Scholar
  54. Logan JM, Jardine TD, Miller TJ, Bunn SE, Cunjak RA, Lutcavage ME (2008) Lipid corrections in carbon and nitrogen stable isotope analyses: comparison of chemical extraction and modelling methods. J Anim Ecol 77:838–846.  https://doi.org/10.1111/j.1365-2656.2008.01394.x PubMedCrossRefGoogle Scholar
  55. Logan JM, Lutcavage ME (2010) Stable isotope dynamics in elasmobranch fishes. Hydrobiologia 644:231–244.  https://doi.org/10.1007/s10750-010-0120-3 CrossRefGoogle Scholar
  56. Lowe CG (2002) Bioenergetics of free-ranging juvenile scalloped hammerhead sharks (Sphyrna lewini) in Kane’ohe Bay, O’ahu, HI. J Exp Mar Bio Ecol 278:141–156CrossRefGoogle Scholar
  57. Lowe CG, Wetherbee BM, Crow GL, Tester AL (1996) Ontogenetic dietary shifts and feeding behavior of the tiger shark, Galeocerdo cuvier, in Hawaiian waters. Environ Biol Fishes 47:203–211CrossRefGoogle Scholar
  58. Lucifora LO, García VB, Menni RC, Escalante AH (2006) Food habits, selectivity, and foraging modes of school shark Galeorhinus galeus. Mar Ecol Prog Ser 315:259–270CrossRefGoogle Scholar
  59. MacNeil MA, Drouillard KG, Fisk AT (2006) Variable uptake and elimination of stable nitrogen isotopes between tissues in fish. Can J Fish Aquat Sci 63:345–353.  https://doi.org/10.1139/F05-219 CrossRefGoogle Scholar
  60. MacNeil MA, Skomal GB, Fisk AT (2005) Stable isotopes from multiple tissues reveal diet switching in sharks. Mar Ecol Prog Ser 302:199–206CrossRefGoogle Scholar
  61. Magurran AE (2004) Measuring biological diversity. Blackwell Science Ltd., Oxford, UKGoogle Scholar
  62. Malpica-Cruz L, Herzka SZ, Sosa-Nishizaki O, Escobedo-Olvera MA (2013) Tissue-specific stable isotope ratios of shortfin mako (Isurus oxyrinchus) and white (Carcharodon carcharias) sharks as indicators of size-based differences in foraging habitat and trophic level. Fish Oceanogr 22:429–445.  https://doi.org/10.1111/fog.12034 CrossRefGoogle Scholar
  63. Malpica-Cruz L, Herzka SZ, Sosa-Nishizaki O, Lazo P (2012) Tissue-specific isotope trophic discrimination factors and turnover rates in a marine elasmobranch: empirical and modeling results. Can J Fish Aquat Sci 69:551–564.  https://doi.org/10.1139/F2011-172 CrossRefGoogle Scholar
  64. Matich P, Heithaus MR, Layman CA (2010) Size-based variation in intertissue comparisons of stable carbon and nitrogen isotopic signatures of bull sharks (Carcharhinus leucas) and tiger sharks (Galeocerdo cuvier). Can J Fish Aquat Sci 67:877–885.  https://doi.org/10.1139/F10-037 CrossRefGoogle Scholar
  65. Miller TW, Brodeur RD, Rau G, Omori K (2010) Prey dominance shapes trophic structure of the northern California Current pelagic food web: Evidence from stable isotopes and diet analysis. Mar Ecol Prog Ser 420:15–26.  https://doi.org/10.3354/meps08876 CrossRefGoogle Scholar
  66. Moser CF, de Avila FR, de Oliveira M, Tozetti AM (2017) Diet composition and trophic niche overlap between two sympatric species of Physalaemus (Anura, Leptodactylidae, Leiuperinae) in a subtemperate forest of southern Brazil. Herpetol Notes 10:9–15Google Scholar
  67. Munroe SEM, Heupel MR, Fisk AT, Logan M, Simpfendorfer CA (2015) Regional movement patterns of a small-bodied shark revealed by stable-isotope analysis. J Fish Biol 86:1567–1586.  https://doi.org/10.1111/jfb.12660 CrossRefPubMedGoogle Scholar
  68. Newman SP, Handy RD, Gruber SH (2009) Diet and prey preference of juvenile lemon sharks Negaprion brevirostris. Mar Ecol Prog Ser 398:221–234.  https://doi.org/10.3354/meps08334 CrossRefGoogle Scholar
  69. Newman SP, Handy RD, Gruber SH (2012) Ontogenetic diet shifts and prey selection in nursery bound lemon sharks, Negaprion brevirostris, indicate a flexible foraging tactic. Environ Biol Fishes 95:115–126CrossRefGoogle Scholar
  70. Olin JA, Hussey NE, Fritts M, Heupel MR, Simpfendorfer CA, Poulakis GR, Fisk AT (2011) Maternal meddling in neonatal sharks: implications for interpreting stable isotopes in young animals. Rapid Commun Mass Spectrom 25:1008–1016.  https://doi.org/10.1002/rcm.4946 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Olin JA, Hussey NE, Grgicak-Mannion A, Fritts MW, Wintner SP, Fisk AT (2013) Variable δ15N diet-tissue discrimination factors among sharks: implications for trophic position, diet and food web models. PLoS One 8:1–11.  https://doi.org/10.1371/journal.pone.0077567 CrossRefGoogle Scholar
  72. Parnell AC, Jackson AL (2013) SIAR: stable isotope analysis in R. R package version 4:2Google Scholar
  73. Pérez-Jiménez JC, Sosa-Nishizaki O, Furlong-Estrada E, Corro-Espinosa D, Venegas-Herrera A, Barragán-Cuencas OV (2005) Artisanal shark fishery at «Tres Marias» Islands and Isabel Island in the Central Mexican Pacific. J Northwest Atl Fish Sci 35:333–343CrossRefGoogle Scholar
  74. Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Ann Rev Ecol Syst 18:293–320CrossRefGoogle Scholar
  75. Pettitt-Wade H, Newman SP, Parsons KT, Gruber SH, Handy RD (2011) Dietary metal and macro-nurtient intakes of juvenile lemon sharks determined from the nutritional composition of prey items. Mar Ecol Prog Ser 433:245–260.  https://doi.org/10.3354/meps09114 CrossRefGoogle Scholar
  76. Pianka ER (1973) The structure of lizard communities. Annu Rev Ecol Evol Syst 4:53–74CrossRefGoogle Scholar
  77. Pianka ER, Pianka HD (1976) Comparative ecology of twelve species of nocturnal lizards (Gekkonidae) in the Western Australian Desert. Copeia 1976:125–142CrossRefGoogle Scholar
  78. Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–718CrossRefGoogle Scholar
  79. Quesada O, González-Freire C, Ferrer MC, Colón-Sáez JO, Fernández-García E, Mercado J, Dávila A, Morales R, Lasalde-Dominicci JA (2016) Uncovering the lipidic basis for the preparation of functional nicotinic acetylcholine receptor detergent complexes for structural studies. Sci Rep 6:1–12.  https://doi.org/10.1038/srep32766 CrossRefGoogle Scholar
  80. R Core Team (2017) R: A language and environment for statistical computing.Google Scholar
  81. Reis A, Rudnitskaya A, Blackburn GJ, Fauzi NM, Pitt AR, Spickett CM (2013) A comparison of five lipid extraction solvent systems for lipidomic studies of human LDL. J Lipid Res 54:1812–1824.  https://doi.org/10.1194/jlr.M034330 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Rosende-Pereiro A, Corgos A (2018) Pilot acoustic tracking study on young of the year scalloped hammerhead sharks, Sphyrna lewini, within a coastal nursery area in Jalisco, Mexico. Lat Am J Aquat Res 46(4):645–659.  https://doi.org/10.3856/vol46-issue4-fulltext-2 CrossRefGoogle Scholar
  83. Rosende-Pereiro A (2019) Habitat use and ecology of young-of-the-year hamerhead shark, Sphyrna lewini, on the coast of Jalisco and Colima. Dissertation, Universidad de Guadalajara.Google Scholar
  84. Simpfendorfer CA, Heupel MR, White WT, Dulvy NK (2011) The importance of research and public opinion to conservation management of sharks and rays: a synthesis. Mar Freshw Res 62:518.  https://doi.org/10.1071/MF11086 CrossRefGoogle Scholar
  85. Speed CW, Meekan MG, Field IC, McMahon CR, Abrantes K, Bradshaw CJA (2012) Trophic ecology of reef sharks determined using stable isotopes and telemetry. Coral Reefs 31:357–367.  https://doi.org/10.1007/s00338-011-0850-3 CrossRefGoogle Scholar
  86. Stillwell CE, Kohler NE (1982) Food, feeding habits, and estimates of daily ration of the shortfin mako (Isurus oxyrinchus) in the northeast Atlantic. Can J Fish Aquat Sci 39:407–414CrossRefGoogle Scholar
  87. Tamburin E, Kim SL, Elorriaga-Verplancken FR, Madigan DJ, Hoyos-Padilla M, Sánchez-González A, Hernández-Herrera A, Castillo-Geniz JL, Godinez-Padilla CJ, Galván-Magaña F (2019) Isotopic niche and resource sharing among young sharks (Carcharodon carcharias and Isurus oxyrinchus) in Baja California, Mexico. Mar Ecol Prog Ser 613:107–124.  https://doi.org/10.3354/meps12884 CrossRefGoogle Scholar
  88. Torres-Huerta AM, Villavicencio-Garayzar C, Corro-Espinosa D (2008) Biología reproductiva de la cornuda común Sphyrna lewini Griffith & Smith (Sphyrnidae) en el Golfo de California. Hidrobiológica 18:227–238Google Scholar
  89. Torres-Rojas YE, Hernández-Herrera A, Galván-Magaña F, Alatorre-Ramírez VG (2010) Stomach content analysis of juvenile, scalloped hammerhead shark Sphyrna lewini captured off the coast of Mazatlán, Mexico. Aquat Ecol 44:301–308.  https://doi.org/10.1007/s10452-009-9245-8 CrossRefGoogle Scholar
  90. Torres-Rojas YE, Páez Osuna F, Camalich J, Galván Magaña F (2015) Diet and trophic level of scalloped hammerhead shark (Sphyrna lewini) from the Gulf of California and Gulf of Tehuantepec, Mexico. Iran J Fish Sci 14:767–785Google Scholar
  91. Torres-Rojas YE, Páez Osuna F, Hernández Herrera A, Galván Magaña F, Aguiñiga García S, Villalobos Ortíz H, Sampson L (2014) Feeding grounds of juvenile scalloped hammerhead sharks (Sphyrna lewini) in the south-eastern Gulf of California. Hydrobiologia 726:81–94.  https://doi.org/10.1007/s10750-013-1753-9 CrossRefGoogle Scholar
  92. Underwood AJ (2009) Experiments in ecology. Their logical design and interpretation using analysis of variance, 11th edn. Cambridge University Press, CambridgeGoogle Scholar
  93. Vaudo JJ, Matich P, Heithaus MR (2010) Mother-offspring isotope fractionation in two species of placentatrophic sharks. J Fish Biol 77:1724–1727.  https://doi.org/10.1111/j.1095-8649.2010.02813.x CrossRefPubMedGoogle Scholar
  94. Zar JH (2010) Biostatistical analysis, 5th edn. Pearson Prentice Hall, New JerseyGoogle Scholar
  95. Zanella I, López-Garro A, Cure K (2019) Golfo Dulce: critical habitat and nursery area for juvenile scalloped hammerhead sharks, Sphyrna lewini, in the Eastern Tropical Pacific Seascape. Environ Biol Fish. 102:1291–1300.  https://doi.org/10.1007/s10641-019-00907-1 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Departamento de Estudios para el Desarrollo Sustentable de Zonas CosterasUniversidad de GuadalajaraSan Patricio-MelaqueMexico
  2. 2.Escuela Nacional de Ingeniería PesqueraUniversidad Autónoma de NayaritSan BlasMexico

Personalised recommendations