Advertisement

Ontogenetic development of the horn and hump of the Chinese cavefish Sinocyclocheilus furcodorsalis (Cypriniformes: Cyprinidae)

  • D. SoaresEmail author
  • M. Pluviose
  • Y. Zhao
Article

Abstract

Cave adaptation has given rise to a diversity of unusual morphologies. One prominent character in Chinese cavefishes of the genus Sinocyclocheilus is the presence of a skull horn and a dorsal hump. These characters are present only in species that are troglobitic. Here we examine the osteological growth that underlies the horn and the hump of the species S. furcodorsalis using micro computed tomography. We tested the hypothesis that all structures grow isometrically, and found that the skull and the bony shelf that supports the horn grow isometrically in all dimensions. The neural spine of the first vertebrae, on the other hand, grew allometrically, getting taller and thinner with time. When comparing each structure with skull growth, the horn grew isometrically in the anterior-posterior and the medial-lateral dimensions. But the horn grew faster in height than the skull. The neural spine grew isometrically with the skull in the rostral-caudal dimension, but allometrically in the dorsal-ventral and medial-lateral dimensions. Even though the function of the horn and the hump are not known, our results suggest that heterochronic changes has led to allometric growth in these structures.

Keywords

Cavefish Skull Morphology Development 

Notes

Acknowledgements

We thank Dr. Gal Haspel for the helpful comments and Dante Fenolio for Fig. 1.

Funding

This work is supported by grants (NSFC-31471961 and 31071884) from the National Nature Science Foundation of China, a grant (GEFC-15-16) from National Geography Society and a grant (Y229YX5105) from the Key Laboratory of the Zoological Systematics and Evolution of the Chinese Academy of Sciences.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Alexander RM (1969) Mechanics of the feeding action of a cyprinid fish. J Zool 159:1–15CrossRefGoogle Scholar
  2. Alvarez J (1946) Revisión del género Anoptichthys con descripción de una especie nueva (Pisc., Characidae). An Esc Nac Cien Biol Mex 4:263–282Google Scholar
  3. Alvarez J (1947) Descripción de Anoptichthys hubbsi caracínido ciego de La Cueva de Los Sabinos. SLP Revista de la Sociedad Mexicana de Historia Natural 8:215–219Google Scholar
  4. Brandon RA (1971) North American troglobitic salamanders: some aspects of modification in cave habitats, with special reference to Gyrinophilus palleucus. Bull Natl Speleol Soc 33:1–21Google Scholar
  5. Burress PB, Burress ED, Armbruster JW (2017) Body shape variation within the southern cavefish, Typhlichthys subterraneus (Percopsiformes: Amblyopsidae). Zoomorphology 136:365–377CrossRefGoogle Scholar
  6. Carroll AM, Wainwright PC, Huskey SH, Collar DC, Turingan RG (2004) Morphology predicts suction feeding performance in centrarchid fishes. J Exp Biol 207:3873–3881CrossRefGoogle Scholar
  7. Chen Y, Yang J, Zhu Z (1994) A new fish of the genus Sinocyclocheilus from Yunnan with comments on its characteristic adaptation (Cypriniformes: Cyprinidae). Acta Zootaxon Sin 19:246–253Google Scholar
  8. Chen SY, Zhang RD, Feng JG, Xiao H, Li WX, Zan RG, Zhang YP (2009) Exploring factors shaping population genetic structure of the freshwater fish Sinocyclocheilus grahami (Teleostei, Cyprinidae). J Fish Biol 74:1774–1786CrossRefGoogle Scholar
  9. Cooper JE, Kuehne RA (1974) Speoplatyrhinus poulsoni, a new genus and species of subterranean fish from Alabama. Copeia 1974:486–493CrossRefGoogle Scholar
  10. Gross JB, Krutzler AJ, Carlson BM (2014) Complex craniofacial changes in blind cave-dwelling fish are mediated by genetically symmetric and asymmetric loci. Genetics 196:1303–1319CrossRefGoogle Scholar
  11. He Y, Chen XY, Xiao TQ, Yang JX (2013) Three-dimensional morphology of the Sinocyclocheilus hyalinus (Cypriniformes: Cyprinidae) horn based on synchrotron X-ray microtomography. Zool Res 34:E128–E134Google Scholar
  12. Ivanovic A, Aljancic G, Arntzen JW (2013) Skull shape differentiation of black and white olms (Proteus anguinus anguinus and Proteus a. parkelj) an exploratory analysis with micro-CT scanning. Contrib Zool 82(2):107–114Google Scholar
  13. Lauder GV Jr (1980) Evolution of the feeding mechanism in primitive actionopterygian fishes: a functional anatomical analysis of Polypterus, Lepisosteus, and Amia. J Morphol 163(3):283–317CrossRefGoogle Scholar
  14. Li W, Tao J (2002) Local dissection of body of the fishes Sinocyclocheilus rhinocerous. Journal of Yunnan Agricultural University 17(207–209):219Google Scholar
  15. Li W, Wu D, Chen A, Tao J (1996) Histological study on the horn-like projection of the head of Sinocyclocheilus rhinocerous. Journal of Yunnan University (Natural Sciences) 19:426–428Google Scholar
  16. Mitchell RW, Elliott RW, Russell WH (1977) Mexican eyeless characin fishes, genus Astyanax: environment, distribution, and evolution. Texas Tech Press USA. Special publications No. 12 Texas University Press. Lubbock, p 89Google Scholar
  17. Reznick DN, Ghalambor CK, Crooks K (2008) Experimental studies of evolution in guppies: a model for understanding the evolutionary consequences of predator removal in natural communities. Mol Ecol 17(1):97–107CrossRefGoogle Scholar
  18. Romero A, Zhao Y, Chen X (2009) The Hypogean fishes of China. Environ Biol Fish 86:211–278CrossRefGoogle Scholar
  19. Specziár A (2011) Size-dependent prey selection in piscivorous pikeperch Sander lucioperca and Volga pikeperch Sander volgensis shaped by bimodal prey size distribution. J Fish Biol 79:1895–1917CrossRefGoogle Scholar
  20. Trajano E (2001) Ecology of subterranean fishes: an overview. Environ Biol Fish 62:133–160CrossRefGoogle Scholar
  21. Wainwright PC, Longo SJ (2017) Functional innovations and the conquest of the oceans by acanthomorph fishes. Curr Biol 27(11):R550–R557CrossRefGoogle Scholar
  22. Wankowski JWJ (1979) Morphological limitations, prey size selectivity, and growth response of juvenile Atlantic salmon, Salmo salar. J Fish Biol 14:89–100CrossRefGoogle Scholar
  23. Xiao H, Chen SY, Liu ZM, Zhang RD, Li WX, Zan RG, Zhang YP (2005) Molecular phylogeny of Sinocyclocheilus (Cypriniformes: Cyprinidae) inferred from mitochondrial DNA sequences. Mol Phylogenet Evol 36:67–77CrossRefGoogle Scholar
  24. Xing Y, Zhang C, Fan E, Zhao Y (2016) Freshwater fishes of China: species richness, endemism, threatened species and conservation. Divers Distrib 22:358–370CrossRefGoogle Scholar
  25. Zhao Y, Zhang C (2009) Endemic fishes of Sinocyclocheilus (Cypriniformes: Cyprinidae) in China. Species diversity, cave adaptation, systematics and zoogeography. Science Press, BeijingGoogle Scholar
  26. Zhao Y, Gozlan RE, Zhang CG (2011) Out of sight out of mind: current knowledge of Chinese cave fishes. J Fish Biol 79:1545–1562CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Key Laboratory of Zoological Systematics and Evolution, Institute of ZoologyChinese Academy of SciencesBeijingChina
  2. 2.Biological SciencesNew Jersey Institute of TechnologyNewarkUSA

Personalised recommendations