Advertisement

Environmental Biology of Fishes

, Volume 102, Issue 5, pp 713–725 | Cite as

Hydrological variability, zooplankton availability and the shift between planktivore-benthivore feeding behaviour in the visual predator fish, Odontesthes bonariensis

  • A. M. RennellaEmail author
  • M. D. Geronazzo
  • M. E. Romero
  • M. Boveri
  • J. J. Rosso
Article

Abstract

Hydrology is a key factor in the dynamic of zooplankton community in lakes with high water renewal rate. Crustaceans’ zooplankton biomass can sharply decline during flooding periods as consequence of wash-out effect. The hydrologically induced changes in zooplankton community may certainly affect the feeding behaviour of planktivorous fishes, but this has not been studied yet. The inland silverside, Odontesthes bonariensis (Valenciennes, 1835), is the main visual planktivorous fish in temperate shallow lakes of South America. We analyzed the diet composition and feeding strategy of O. bonariensis in a large run-of-the-river shallow lake, along two consecutive spring-summer periods with contrasting hydrological conditions. Water residence time varied one order of magnitude between flood and drought period. As it was expected, silversides showed size selective feeding on large cladocerans during drought period when zooplankton biomass was high. On the other hand, during high flushing period, zooplankton abundance decreased noticeable and silversides drastically changes its feeding behaviour from visual planktivore to benthivore. The analysis of the feeding strategy of O. bonariensis showed that this species largely behaves as a specialist irrespective of the hydrological conditions. However, the main involved prey varied from large Daphnia during low flow conditions to large Ostracoda during floods. Our study reveals that the variation in the availability of suitable prey induced by hydrological variability is associated with a drastic change in feeding grounds and prey selection of O. bonariensis. This flexible predatory behaviour may have consequences on food web dynamics of shallow lakes that are further discussed.

Keywords

Hydrology Inland silverside Predation Selectivity Flushed lakes Zooplankton 

Notes

Acknowledgements

We thank C. Petracchi, A. Sosnovsky, H. T. Von Bernard, D. Blanco Bello for their assistance. Thanks are due to two anonymous referees for their useful comments and suggestions on a previous version of this manuscript. JJ Rosso acknowledges research support from the Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET).

Compliance with ethical standards

All applicable international, nationaland institutional guidelines for the care and use of animals were followed.

References

  1. Amundsen PA, Gabler HM, Stladvik FJ (1996) A new approach to graphical analysis of feeding strategy from stomach contents data modification of the Costello (1990) method. J Fish Biol 48:607–614Google Scholar
  2. Aquino AE (1991) Alimentación del pejerrey Odontesthes bonariensis (Osteichthyes; Atherinidae) en el embalse el Cardillal (Tucumán, Argentina). Biología Acuática 15(2):176–177Google Scholar
  3. Arthington AH, Balcombe SR (2011) Extreme flow variability and the ‘boom and bust’ ecology of fish in arid-zone floodplain rivers: a case history with implications for environmental flows, conservation and management. Ecohydrology 4:708–720CrossRefGoogle Scholar
  4. Badiou PH, Goldsborough LG (2015) Ecological impacts of an exotic benthivorous fish, the common carp (Cyprinus carpio L.), on water quality, sedimentation, and submerged macrophyte biomass in wetland mesocosms. Hydrobiologia 755:107–121CrossRefGoogle Scholar
  5. Balcombe SR, Bunn SE, McKenzie-Smith FJ, Davies PM (2005) Variability of fish diets between dry and flood periods in an arid zone floodplain river. J Fish Biol 67:1552–1567CrossRefGoogle Scholar
  6. Baranyi C, Hein T, Holarek C, Keckeis S, Schiemer F (2002) Zooplankton biomass and community structure in a Danube River floodplain system: effects of hydrology. Freshw Biol 47:473–482CrossRefGoogle Scholar
  7. Basu BK, Pick FR (1996) Factors regulating phytoplankton and zooplankton biomass in temperate rivers. Limnol Oceanogr 41:1572–1577CrossRefGoogle Scholar
  8. Bottrell HH, Duncan A, Gliwicz ZM, Grygierek E, Herzig A, Hillbright-Ilkowska A, Kurasawa H, Larsson P, Weglenska T (1976) A review of some problems in zooplankton production studies. Norwegian Journal of Zoology 24:419–456Google Scholar
  9. Boveri MB, Quirós R (2002) Trophic interactions in pampean shallow lakes: evaluation of silverside predatory effects in mesocosm experiments. Verh Internat Verein Limnol 28:1–5Google Scholar
  10. Boveri MB, Quirós R (2007) Cascading trophic effects in pampean shallow lakes: results of a mesocosm experiment using two coexisting fish species with different feeding strategies. Hydrobiologia 584:215–222CrossRefGoogle Scholar
  11. Brook AJ, Woodward WB (1956) Some observations on the effects of water inflow and outflow on the plankton of small lakes. J Anim Ecol 25:22–35CrossRefGoogle Scholar
  12. Brooks JL, Dodson SI (1965) Predation, body size, and composition of plankton. Science 150(3692):28–35CrossRefGoogle Scholar
  13. Calvo J, Morriconi E, Zavala Suárez JE (1977) Fenómenos reproductivos en el pejerrey (Basilichthys bonariensis). II. Proporción de sexos y desplazamientos reproductivos. Phys B 36:135–139Google Scholar
  14. Campbell CE, Knoechel R, Copeman D (1998) Evaluation of factors related to increased zooplankton biomass and altered species composition following impoundment of a Newfoundland reservoir. Can J Fish Aquat Sci 55:230–238CrossRefGoogle Scholar
  15. Cassemiro FADS, Hahn NS, Rangel TFLV (2003) Diet and trophic ecomorphology of the silverside, Odontesthes bonariensis, of the Salto Caxias reservoir, rio Iguaçu, Paraná, Brazil. Neotropical ichthyology 1:127–131CrossRefGoogle Scholar
  16. Claps MC, Gabellone N, Benítez H (2004) Zooplankton biomass in an eutrophic shallow lake (Buenos Aires, Argentina): spatiotemporal variations. Annls Limnol Int J Limnol 40:101–110CrossRefGoogle Scholar
  17. Colautti DC, Remes Lenicov M, Berasain G (2003) Vulnerabilidad del pejerrey Odontesthes bonariensis a la pesca deportiva en función de su condición. Biología Acuática 20:49–55Google Scholar
  18. Colautti DC, Baigún C, Llompart F, Maiztegui T, De Souza JG, Solimano P, Balboni L, Berasain G (2015) Fish assemblage of a Pampean shallow lake, a story of instability. Hydrobiologia 752:175–186CrossRefGoogle Scholar
  19. Costello MJ (1990) Predator feeding strategy and prey importance: a new graphical analysis. J Fish Biol 36:261–263CrossRefGoogle Scholar
  20. Destéfanis S, Freyre L (1972) Relaciones tróficas de los peces de la laguna Chascomús con un intento de referenciación ecológica y tratamiento bioestadístico del espectro trófico. Acta Zool Lilloana 29:17–33Google Scholar
  21. Dickman M (1969) Some effects of lake renewal on phytoplankton productivity and species composition. Limnol Oceanogr 14:660–666CrossRefGoogle Scholar
  22. Diovisalvi N, Salcedo Echeverry GE, Lagomarsino L, Zagarese HE (2015) Seasonal patterns and responses to an extreme climate event of rotifers community in a shallow eutrophic Pampean lake. Hydrobiologia 752:125–137CrossRefGoogle Scholar
  23. Dumont HJ, Van De Velde I, Dumont S (1975) The dry weight estimate of biomass in selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton and benthos of continental waters. Oecologia 19:75–97CrossRefGoogle Scholar
  24. Echaniz S, Vignatti A, José de Paggi S, Paggi J, Pilati A (2006) Zooplankton seasonal abundance of south American saline shallow lakes. Int Rev Hydrobiol 91:86–100CrossRefGoogle Scholar
  25. Elisio M, Vera C, Miranda LA (2018) Influences of ENSO and PDO phenomena on the local climate variability can drive extreme temperature and depth conditions in a Pampean shallow lake affecting fish communities. Environ Biol Fish 101:653–666CrossRefGoogle Scholar
  26. Emlen JM (1966) The role of time and energy in food preference. Am Nat 100:91–116CrossRefGoogle Scholar
  27. Escalante AH (1985) Alimentación del pejerrey Basilichthys bonariensis bonariensis (Osteichthyes: Atherinidae) del Embalse de Río Tercero, provincia de Córdoba. Neotrópica 31:22–26Google Scholar
  28. Gabler HM, Amundsen PA (2010) Feeding strategies, resource utilization and potential mechanisms for competitive coexistence of Atlantic salmon and alpine bullhead in a sub-Arctic river. Aquat Ecol 44:325–336CrossRefGoogle Scholar
  29. García de Emiliani MO (1997) Effects of water level fluctuations on phytoplankton in a river floodplain lake system (Paraná River, Argentina). Hydrobiologia 357:1–15CrossRefGoogle Scholar
  30. Geronazzo MD (2012) Efecto de la hidrología sobre la composición de la dieta del pejerrey pampeano, Odontesthes bonariensis. Dissertation, Universidad de Buenos Aires, Buenos AiresGoogle Scholar
  31. González Sagrario MA, Ferrero L (2013) The trophic role of Cyphocharax voga (Hensel 1869) according to foraging area and diet analysis in turbid shallow lakes. Fundam Appl Limnol 183:75–88CrossRefGoogle Scholar
  32. Grosman MF (1995) Variación estacional en la dieta del pejerrey (Odontesthes bonariensis). Rev Asoc Cs Nat Litoral 26:9–18Google Scholar
  33. Haney JF, Hall DJ (1973) Sugar-coated Daphnia: a preservation technique for Cladocera. Limnol Oceanogr 18:331–333CrossRefGoogle Scholar
  34. Havens KE, Beaver JR, Manis EE, East TL (2015) Inter-lake comparisons indicate that fish predation, rather than high temperature, is the major driver of summer decline in Daphnia and other changes among cladoceran zooplankton in subtropical Florida lakes. Hydrobiologia 750:57–67CrossRefGoogle Scholar
  35. Iglesias C, Mazzeo N, Meerhoff M, Lacerot G, Clemente JM, Scasso F, Kruk C, Goyenola G, García-Alonso J, Amsinck SL, Paggi JC, José de Paggi S, Jeppesen E (2011) High predation is of key importance for dominance of small-bodied zooplankton in warm shallow lakes: evidence from lakes, fish exclosures and surface sediments. Hydrobiologia 667:133–147CrossRefGoogle Scholar
  36. Jensen H, Kahilainen KK, Amundsen PA, Gjelland KØ, Tuomaala A, Malinen T, Bøhn T (2008) Predation by brown trout (Salmo trutta) along a diversifying prey community gradient. Can J Fish Aquat Sci 65:1831–1841CrossRefGoogle Scholar
  37. Kosten S, Vernoij M, Van Nes E, González Sagrario MA, Clevers JGPW, Scheffer M (2012) Bimodal transparency as an indicator for alternative states in south American lakes. Freshw Biol 57:1191–1201CrossRefGoogle Scholar
  38. Lazzaro X (1987) A review of planktivorous fishes: their evolution, feeding behaviours, selectivities, and impacts. Hydrobiologia 146:97–167CrossRefGoogle Scholar
  39. Levins R (1968) Evolution in changing environments: some theoretical explorations. Princeton University Press, PrincetonGoogle Scholar
  40. MacArthur RH, Pianka ER (1966) On optimal use of a patchy environment. Am Nat 100:603–609CrossRefGoogle Scholar
  41. McQueen DJ, Post R, Mills EL (1986) Trophic relationships in freshwater pelagic ecosystems. Can J Fish Aquat Sci 43:1571–1581CrossRefGoogle Scholar
  42. Meyer E (1989) The relationship between body length parameters and dry mass in running water invertebrates. Arch Hydrobiol 117:191–203Google Scholar
  43. Obertegger U, Flaim G, Braioni MG, Sommaruga R, Corradini F, Borsato A (2007) Water residence time as a driving force of zooplankton structure and succession. Aquat Sci 69:575–583CrossRefGoogle Scholar
  44. Obertegger U, Borsato A, Flaim G (2010) Rotifer–crustacean interactions in a pseudokarstic lake: influence of hydrology. Aquat Ecol 44:121–130CrossRefGoogle Scholar
  45. Oueda A, Guenda W, Ouattara A, Gourème G, Hugueny B, Kabre GB (2008) Seasonal diet of shift of the most important fish species in a sahelo-soudanian reservoir (Burkina Faso). J Fish Aquat Sci 3:240–251CrossRefGoogle Scholar
  46. Pace ML (1984) Zooplankton community structure, but not biomass, influences the phosphorus–chlorophyll a relationship. Can J Fish Aquat Sci 41:1089–1096CrossRefGoogle Scholar
  47. Piedras SRN, Pouey JLOF (2005) Alimentação do peixe-rei (Odontesthes bonariensis, Atherinopsidae) nas lagoas Mirim e Mangueira, Rio Grande do Sul, Brasil. Iheringia, Série Zoologia 95:117–120CrossRefGoogle Scholar
  48. Quirós R (1990) Factors related to variance of residuals in chlorophyll-total phosphorus regressions in lakes and reservoirs of Argentina. Hydrobiologia 200(201):343–355CrossRefGoogle Scholar
  49. Quirós R (1998) Fish effects on trophic relationships in the pelagic zone of lakes. Hydrobiologia 361:101–111CrossRefGoogle Scholar
  50. Quirós R, Drago E (1999) The environmental state of Argentinean lakes: an overview. Lakes and reservoirs. Res Manag 4:55–64Google Scholar
  51. Quirós R, Rosso JJ, Rennella AM, Sosnovsky A, Boveri MB (2002) Análisis del estado trófico de las lagunas pampeanas (Argentina). Interciencia 27:584–591Google Scholar
  52. Quirós R, Boveri MB, Petracchi CA, Rennella AM, Rosso JJ, Sosnovsky A, von Bernard HT (2006) Los efectos de la agriculturización del humedal pampeano sobre la eutrofización de sus lagunas. In J.G. Tundisi T, Matsumura-Tundisi C, Sidagis T, Galli C (eds.) Eutrofização na América do Sul: Causas, conseqüências e tecnologias de gerenciamento e controle, Instituto Internacional de Ecologia, ABC, IIE, IANAS, Sao Carlos, pp 1–16Google Scholar
  53. Ramsay PM, Rundle SD (1997) A rapid method for estimating biomasss size espectra of benthic metazoan communities. Can J Fish Aquat Sci 54:1716–1724CrossRefGoogle Scholar
  54. Rennella AM (2007) Relevancia de las interacciones tróficas en la determinación de la estructura del zooplancton en grandes lagunas pampeanas. Dissertation, Universidad de Buenos Aires, Buenos AiresGoogle Scholar
  55. Rennella AM, Quirós R (2002) Relations between planktivorous fish and zooplankton in two very shallow lakes of the pampa plain. Verh Int Ver Theor Angew Limnol 28:887–891Google Scholar
  56. Rennella AM, Quirós R (2006) The effects of hydrology on plankton biomass in shallow lakes of the Pampa plain. Hydrobiologia 556:181–191CrossRefGoogle Scholar
  57. Ringuelet R, Iriart R, Escalante AH (1980) Alimentación del pejerrey (Basilichthys bonariensis bonariensis, Atherinidae) en Laguna Chascomús (Buenos Aires, Argentina). Relaciones ecológicas de complementación y eficiencia trófica del plancton. Limnobios 1:447–460Google Scholar
  58. Rosso JJ (2006) Peces Pampeanos. Guía y Ecología. L.O.L.A (Literature of Latin America), Buenos AiresGoogle Scholar
  59. Rosso JJ (2008) Relación entre la abundancia y estructura de la comunidad de peces y el régimen hidrológico en lagunas de la alta cuenca del río Salado. Dissertation, Universidad de Buenos AiresGoogle Scholar
  60. Rosso JJ, Quirós R (2009) Interactive effects of abiotic, hydrological and anthropogenic factors on fish abundance and distribution in natural run-of-the-river shallow lakes. River Res Appl 25:713–733CrossRefGoogle Scholar
  61. Rosso JJ, Quirós R (2010a) Patterns in fish species composition and assemblage structure in the upper Salado River lakes, Pampa plain, Argentina. Neotropical Ichthyology 8:135–144CrossRefGoogle Scholar
  62. Rosso JJ, Quirós R (2010b) Patrones de desplazamientos reproductivos en el pejerrey Odontesthes bonariensis. Interciencia 35:407–413Google Scholar
  63. Sagretti L, Bistoni MA (2001) Alimentación de Odontesthes bonariensis (Cuvier y Valenciennes 1835) (Atheriniformes, Atherinidae) en la Laguna salada de Mar Chiquita (Cordoba, Argentina). Gayana (Concepc) 65:37–42Google Scholar
  64. Saunders JF, Lewis WM Jr (1989) Zooplankton abundance in the lower Orinoco River, Venezuela. Limnol Oceanogr 34:397–409CrossRefGoogle Scholar
  65. Schindler DE, Scheuerell MD (2002) Habitat coupling in lake ecosystems. Oikos 98:177–189CrossRefGoogle Scholar
  66. Sierra EM, Pérez SP (2001) Efectos del ENOS sobre el régimen de lluvias en Junín Norte de la provincia de Buenos Aires. Argentina Rev Arg de Agrometeorologia 1:51–57Google Scholar
  67. Sierra EM, Fernández Long ME, Bustos C (1994) Cronología de inundaciones y sequías en el noreste de la provincia de Buenos Aires 1911-89. Rev Fac Agron 14:241–249Google Scholar
  68. Sih A, Christensen B (2001) Optimal diet theory: when does it work, and when and why does it fail? Anim Behav 61:379–390CrossRefGoogle Scholar
  69. Somoza GM, Miranda LA, Berasain GE, Colautti DC, Remes-Lenicov M, Strussmann CA (2008) Historical aspects, current status, and prospects of pejerrey aquaculture in South America. Aquac Res 9:784–793CrossRefGoogle Scholar
  70. Sosnovsky A, Quirós R (2006) The trophic state of small Pampean lakes, its relationship with hydrology and land use intensity. Ecol Austral 16:115–124Google Scholar
  71. Sosnovsky A, Quirós R (2009) Effects of fish manipulations on plankton community in small hypertrophic lakes from the Pampa Plain (Argentina). Limnologica 39:219–229CrossRefGoogle Scholar
  72. Sosnovsky A, Rosso JJ, Quirós R (2010) Trophic interactions in shallow lakes of the Pampa plain (Argentina) and their effects on water transparency during two cold seasons of contrasting fish abundance. Limnetica 29:233–246Google Scholar
  73. Strauss RE (1979) Reliability estimates for Ivlev’s electivity index, the forage ratio, and a proposed linear index of food selectivity. Trans Am Fish Soc 108:344–352CrossRefGoogle Scholar
  74. Svanbäck R, Persson L (2004) Individual diet specialization, niche width and population dynamics: implications for trophic polymorphisms. J Anim Ecol 73:973–982CrossRefGoogle Scholar
  75. Talling JF, Rzóska J (1967) The development of phytoplankton in relation to hydrological regime in the Blue Nile. J Ecol 55:637–662CrossRefGoogle Scholar
  76. Torremorell A, Llames ME, Pérez AP, Escaray R, Bustingorry J, Zagarese H (2009) Annual patterns of phytoplankton density and primary production in a large, shallow lake: the central role of light. Freshw Biol 54:437–449CrossRefGoogle Scholar
  77. Tricart, JF (1973) Geomorfología de la Pampa Deprimida. Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos AiresGoogle Scholar
  78. Vanni JJ (1987) Effects of food availability and fish predation on a zooplankton community. Ecol Monogr 57:61–88CrossRefGoogle Scholar
  79. Vanni MJ, Bowling AM, Dickman EM, Hale RS, Higgins KA, Horgan MJ, Knoll LB, Renwick WH, Stein RA (2006) Nutrient cycling by fish supports relatively more primary production as lake productivity increases. Ecology 87:1696–1709CrossRefGoogle Scholar
  80. Walz N, Welker M (1998) Plankton development in a rapidly flushed lake in the river spree system (Neuendorfer see, Northeast Germany). J Plankton Res 20:2071–2087CrossRefGoogle Scholar
  81. Welcomme RL (1985) River fisheries. FAO fisheries technical paper 330Google Scholar
  82. Wetzel RG (2001) Limnology, 3rd edn. Academic Press, CambridgeGoogle Scholar
  83. Wiens JA (1993) Fat times, lean times and competition among predators. Trends Ecol Evol 8:348–349CrossRefGoogle Scholar
  84. Zagarese HE (1991) Planktivory by Odontesthes bonariensis (Atherinidae: Pisces) larvae and its effects on zooplankton community structure. J Plankton Res 13:549–560CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Facultad de Agronomía, Departamento de Producción Animal, Sistemas de Producción AcuáticaUniversidad de Buenos AiresBuenos AiresArgentina
  2. 2.Grupo de Biotaxonomía Morfológica y Molecular de Peces, Instituto de Investigaciones Marinas y Costeras, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Universidad Nacional de Mar del PlataBuenos AiresArgentina

Personalised recommendations