Environmental Biology of Fishes

, Volume 101, Issue 3, pp 469–488 | Cite as

Trace element and strontium isotopic analysis of Gulf Sturgeon fin rays to assess habitat use

  • P. J. Allen
  • R. J. DeVries
  • D. A. Fox
  • R. I. Gabitov
  • W. G. Anderson


Trace element and 87Sr/86Sr isotope analyses of fish pectoral fin rays offer non-destructive methods for determining habitat use. In this study, water and fin ray samples were analyzed for Gulf Sturgeon Acipenser oxyrinchus desotoi from the Choctawhatchee River Basin (FL and AL, USA) and compared with reference samples from Atlantic Sturgeon A. o. oxyrinchus held at controlled salinities (0, 10, 33 ppt). Samples were analyzed using inductively coupled plasma mass spectrometry, with a multi-collector for 87Sr/86Sr. In water, Sr, Ba, Mn and Zn differed between freshwater and saline habitats, with increases in Sr and decreases in Ba, Mn and Zn. 87Sr/86Sr decreased upstream to downstream with lowest values in saline habitats. In the reference study, water trace element concentrations and 87Sr/86Sr corresponded to those in pectoral fin rays. 87Sr/86Sr was higher in pectoral fin ray than water, due to influence of diet, which differed with salinity. In wild fish, trace elements in pectoral fin rays indicated freshwater emigration to saline habitats primarily occurred in the second to third growth zone with some heterogeneity in the population (4% <0.3 years, 39% 0.5–1.3 years, 39% 1.5–2.3 years, 17% 2.5–3.3 years). Analyses of 87Sr/86Sr indicated initial locations of Gulf Sturgeon were in the middle river, with few fish in the upper or lower river. Most (74%) juvenile Gulf Sturgeon utilized more than one river region prior to freshwater emigration and 48% moved upstream temporarily based on increased 87Sr/86Sr. After initial freshwater emigration, fish utilized lower-river to saline habitats. Collectively, these studies demonstrate the usefulness of trace element and 87Sr/86Sr analyses in sturgeon pectoral fin rays.


Gulf sturgeon Trace element Strontium Atlantic sturgeon Fin 



We thank the National Marine Fisheries Service and Northern Gulf Institute for funding, grant#: NA11OAR4320199; Kent Ware and James Henne, US Fish and Wildlife Service Bears Bluff National Fish Hatchery, Wadmalaw Island, SC, USA for providing juvenile Atlantic Sturgeon; Zachary Mitchell, Heather Stewart, Daniel Aboagye, Shane Ramee, Michael Ciaramella, Charlie Culpepper and Mack Fondren and staff at the Mississippi State University South Farm Aquaculture Facility for assistance with fish care and sampling; Joseph Mitchell for expertise on micromilling; Panseok Yang at the University of Manitoba and Justin Glessner at the University of California Davis for assistance with ICPMS analyses, the Mississippi Agricultural and Forestry Experiment Station (MAFES) and the US Department of Agriculture (USDA) Agricultural Research Service and the USDA National Institute of Food and Agriculture, State project#: 1005154 for facility support; Austin Omer for assistance with figures; and two anonymous reviewers for helpful comments in the review of this manuscript.


  1. Allen PJ, Cech JJ Jr (2007) Age/size effects on juvenile green sturgeon, Acipenser medirostris, oxygen consumption, growth, and osmoregulation in saline environments. Environ Biol Fish 79(3–4):211–229. CrossRefGoogle Scholar
  2. Allen PJ, Hobbs JA, Cech JJ Jr, Van Eenennaam JP, Doroshov SI (2009) Using trace elements in pectoral fin rays to assess life history movements in sturgeon: estimating age at initial seawater entry in Klamath River green sturgeon. Trans Am Fish Soc 138(2):240–250. CrossRefGoogle Scholar
  3. Allen PJ, Allen PJ, Mitchell ZA, DeVries RJ, Aboagye DL, Ciaramella MA, Ramee SW, Stewart HA, Shartau RB (2014) Salinity effects on Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus Mitchill, 1815) growth and osmoregulation. J Appl Ichthyol 30(6):1229–1236. CrossRefGoogle Scholar
  4. Altenritter ME, Kinnison MT, Zydlewski GB, Secor DH, Zydlewski JD (2015) Assessing dorsal scute microchemistry for reconstruction of shortnose sturgeon life histories. Environ Biol Fish 98(12):2321–2335. CrossRefGoogle Scholar
  5. Altinok I, Galli SM, Chapman FA (1998) Ionic and osmotic regulation capabilities of juvenile Gulf of Mexico sturgeon, Acipenser oxyrinchus desotoi. Comp Biochem Physiol A 120(4):609–616. CrossRefGoogle Scholar
  6. Arai T, Levin AV, Boltunov AN, Miyazaki N (2002) Migratory history of the Russian sturgeon Acipenser gueldenstaedti in the Caspian Sea, as revealed by pectoral fin spine Sr:ca ratios. Mar Biol 141(2):315–319CrossRefGoogle Scholar
  7. Balazik MT, McIninch SP, Garman GC, Fine ML, Smith CB (2012) Using energy dispersive x-ray fluorescence microchemistry to infer migratory life history of Atlantic sturgeon. Environ Biol Fish 95(2):191–194. CrossRefGoogle Scholar
  8. Baremore IE, Rosati JD (2014) A validated, minimally deleterious method for aging sturgeon. Fish Bull 112(4):274–282. CrossRefGoogle Scholar
  9. Birstein VJ (1993) Sturgeons and paddlefishes: threatened fishes in need of conservation. Conserv Biol 7(4):773–787. CrossRefGoogle Scholar
  10. Blumenthal NC (1990) The in vitro and in vivo uptake of trace elements by hydroxyapatite. In: Priest ND, Van de Vyver FL (eds) Trace metals and fluoride in bones and teeth. CRC Press, Boca RatonGoogle Scholar
  11. Bruch RM, Campana SE, Davis-Foust SL, Hansen MJ, Janssen J (2009) Lake sturgeon age validation using bomb radiocarbon and known-age fish. Trans Am Fish Soc 138(2):361–372. CrossRefGoogle Scholar
  12. Campana SE (1999) Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Mar Ecol Prog Ser 188:263–297. CrossRefGoogle Scholar
  13. Capo RC, Stewart BW, Chadwick OA (1998) Strontium isotopes as tracers of ecosystem processes: theory and methods. Geoderma 82(1-3):197–225. CrossRefGoogle Scholar
  14. Carriere B, Gillis D, Halden N, Anderson G (2016) Strontium metabolism in the juvenile Lake sturgeon, Acipenser fulvescens (Rafinesque, 1817), and further evaluation of the isotope as a marking tool for stock discrimination. J Appl Ichthyol 32(2):258–266. CrossRefGoogle Scholar
  15. Chase NM, Caldwell CA, Carleton SA, Gould WR, Hobbs JA (2015) Movement patterns and dispersal potential of Pecos bluntnose shiner (Notropis simus pecosensis) revealed using otolith microchemistry. Can J Fish Aquat Sci 72(10):1575–1583. CrossRefGoogle Scholar
  16. Clarke AD, Telmer KH, Shrimpton JM (2007) Elemental analysis of otoliths, fin rays and scales: a comparison of bony structures to provide population and life-history information for the Arctic grayling (Thymallus arcticus). Ecol Freshw Fish 16(3):354–361. CrossRefGoogle Scholar
  17. Collins MR, Smith TIJ (1996) Sturgeon fin ray removal is nondeleterious. North Am J Fish Manag 16(4):939–941.<0939:SFRRIN>2.3.CO;2 CrossRefGoogle Scholar
  18. Dacke CG (1979) Calcium regulation in sub-mammalian vertebrates. Academic Press, LondonGoogle Scholar
  19. Davis MC, Shubin NH, Force A (2004) Pectoral fin and girdle development in the basal Actinopterygians Polydon spathula and Acipenser transmontanus. J Morphol 262(2):608–628. CrossRefPubMedGoogle Scholar
  20. Eerkens JW, Carlson T, Malhi RS, Blake J, Bartelink EJ, Barfod GH, Estes A, Garibay R, Glessner J, Greenwald AM, Lentz K, Li H, Marshall CK (2016) Isotopic and genetic analyses of a mass grave in central California: implications for precontact hunter-gatherer warfare. Am J Phys Anthropol 159(1):116–125. CrossRefPubMedGoogle Scholar
  21. Elsdon TS, Gillanders BM (2003) Reconstructing migratory patterns of fish based on environmental influences on otolith chemistry. Rev Fish Biol Fish 13:219–235CrossRefGoogle Scholar
  22. Elsdon TS, Wells BK, Campana SE, Gillanders BM, Jones CM, Limburg KE, Secor DH, Thorrold SR, Walther BD (2008) Otolith chemistry to describe movements and life-history parameters of fishes: hypotheses, assumptions, limitations and inferences. In: Gibson RN, Atkinson RJA, Gordon JDM (eds) Oceanography and marine biology: an annual review, vol 46. CRC Press, Boca Raton, pp 297–330. CrossRefGoogle Scholar
  23. Findeis EK (1997) Osteology and phylogenetic interrelationships of sturgeons (Acipenseridae). Environ Biol Fish 48(1/2/3/4):73–126. CrossRefGoogle Scholar
  24. Fox DA, Hightower JE, Parauka FM (2000) Gulf sturgeon spawning migration and habitat in the Choctawhatchee River system, Alabama-Florida. Trans Am Fish Soc 129(3):811–826.<0811:GSSMAH>2.3.CO;2 CrossRefGoogle Scholar
  25. Fox DA, Hightower JE, Parauka FM (2002) Estuarine and nearshore marine habitat use by gulf sturgeon from the Choctawhatchee River system, Florida. In: Van Winkle W, Anders PJ, Secor DH, Dixon DA (eds) Biology, management, and protection of north American sturgeon. American Fisheries Society, Symposium 28, Bethesda, p 111–126Google Scholar
  26. Grammer PO, Mickle PF, Peterson MS, Havrylkoff J-M, Slack WT, Leaf RT (2015) Activity patterns of gulf sturgeon (Acipenser oxyrinchus desotoi) in the staging area of the Pascagoula River during fall outmigration. Ecol Freshw Fish 24(4):553–561. CrossRefGoogle Scholar
  27. Heise RJ, Slack WT, Ross ST, Dugo MA (2005) Gulf sturgeon summer habitat use and fall migration in the Pascagoula River, Mississippi, USA. J Appl Ichthyol 21(6):461–468. CrossRefGoogle Scholar
  28. Hightower JE, Zehfuss KP, Fox DA, Parauka FM (2002) Summer habitat use by gulf sturgeon in the Choctawhatchee River, Florida. J Appl Ichthyol 18(4-6):595–600. CrossRefGoogle Scholar
  29. Hobbs JA, Bennett WA, Burton J, Gras M (2007) Classification of larval and adult Delta smelt to nursery areas by use of trace elemental fingerprinting. Trans Am Fish Soc 136(2):518–527. CrossRefGoogle Scholar
  30. Hobbs JA, Lewis LS, Ikemiyagi N, Sommer T, Baxter RD (2010) The use of otolith strontium isotopes (87Sr/86Sr) to identify nursery habitat for a threatened estuarine fish. Environ Biol Fish 89(3-4):557–569. CrossRefGoogle Scholar
  31. Hodge BW, Wilzbach MA, Duffy WG, Quinones RM, Hobbs JA (2016) Life history diversity in Klamath River steelhead. Trans Am Fish Soc 145(2):227–238. CrossRefGoogle Scholar
  32. Housh T, McMahon TP (2000) Ancient isotopic characteristics of Neogene potassic magmatism in western new Guinea (Irian Jaya, Indonesia). Lithos 50(1-3):217–239. CrossRefGoogle Scholar
  33. Ingram BL, Weber PK (1999) Salmon origin in California's Sacramento-San Joaquin river system as determined by otolith stronitum isotopic composition. Geology 27(9):851–854.<0851:SOICSS>2.3.CO;2 CrossRefGoogle Scholar
  34. Kennedy BP, Blum JD, Folt CL, Nislow KH (2000) Using natural strontium isotopic signatures as fish markers: methodology and application. Can J Fish Aquat Sci 57(11):2280–2292. CrossRefGoogle Scholar
  35. Kynard B, Horgan M (2002) Ontogenetic behavior and migration of Atlantic sturgeon, Acipenser oxyrinchus oxyrinchus, and shortnose sturgeon, A. brevirostrum, with notes on social behavior. Environ Biol Fish 63(2):137–150. CrossRefGoogle Scholar
  36. Kynard B, Parker E (2004) Ontogenetic behavior and migration of Gulf of Mexico sturgeon, Acipenser oxyrinchus desotoi, with notes on body color and development. Environ Biol Fish 70(1):43–55. CrossRefGoogle Scholar
  37. Loewen TN, Carriere B, Reist JD, Halden NM, Anderson WG (2016) Linking physiology and biomineralization processes to ecological inferences on the life history of fishes. Comp Biochem Physiol A 202:123–140. CrossRefGoogle Scholar
  38. Mason WT, Clugston JP (1993) Foods of the Gulf sturgeon in the Suwannee River, Florida. Trans Am Fish Soc 122(3):378–385.<0378:FOTGSI>2.3.CO;2 CrossRefGoogle Scholar
  39. Meunier FJ (2002) Types of calcified structures: skeleton. In: Panfili J, de Pontual H, Troadec H, Wright PJ (eds) Manual of fish sclerochronology. Ifremer-IRD, Brest, France, pp 65–88Google Scholar
  40. Milton DA, Chenery SR (2005) Movement patterns of barramundi Lates calcarifer, inferred from 87Sr/86Sr ratios in otoliths, indicate non-participation in spawning. Mar Ecol Prog Ser 301:279–291. CrossRefGoogle Scholar
  41. Nelson TC, Doukakis P, Lindley ST, Schreier AD, Hightower JE, Hidlebrand LR, Whitlock RE, Webb MAH (2013) Research tools to investigate movements, migrations, and life history of sturgeons (Acipenseridae), with an emphasis on marine-oriented populations. PLoS One 8(8):e71552. CrossRefPubMedPubMedCentralGoogle Scholar
  42. Nguyen PL, Jackson ZJ, Peterson DL (2016) Comparison of fin ray sampling methods on white sturgeon Acipenser transmontanus growth and swimming performance. J Fish Biol 88(2):655–667. CrossRefPubMedGoogle Scholar
  43. Pannella G (1971) Fish otoliths: daily growth layers and periodical patterns. Science 173(4002):1124–1127. CrossRefGoogle Scholar
  44. Paton C, Hellstron J, Paul B, Woodhead J, Hergt J (2011) Iolite: freeware for the visualisation and processing of mass spectrometric data. J Anal Atom Spectrom 26(12):2508–2518. CrossRefGoogle Scholar
  45. Persson P, Sundell K, Bjornsson BT, Lundqvist H (1998) Calcium metabolism and osmoregulation during sexual maturation of river running Atlantic salmon. J Fish Biol 52(2):334–349. CrossRefGoogle Scholar
  46. Peterson MS, Havrylkoff J-M, Grammer PO, Mickle PF, Slack WT (2016) Consistent spatiotemporal estuarine habitat use during emigraton or immigration of a western population of gulf sturgeon. Trans Am Fish Soc 145(1):27–43. CrossRefGoogle Scholar
  47. Phelps QE, Whitledge GW, Tripp SJ, Smith KT, Garvey JE, Herzog DP, Ostendorf DE, Ridings JW, Crites JW, Hrabik RA, Doyle WJ, Hill TD (2012) Identifying river of origin for age-0 Scaphirhynchus sturgeons in the Missouri and Mississippi rivers using fin ray microchemistry. Can J Fish Aquat Sci 69(5):930–941.
  48. Phelps QE, Hupfeld RN, Whitledge GW (2016) Lake sturgeon Acipenser fulvescens and shovelnose sturgeon Scaphirhynchus platorynchus environmental life history revealed using pectoral fin-ray microchemistry: implications for interjurisdictional conservation through fishery closure zones. J Fish Biol 90(2):626–639. CrossRefPubMedGoogle Scholar
  49. Randall MT, Sulak KJ (2012) Evidence of autumn spawning in Suwannee River gulf sturgeon, Acipenser oxyrinchus desotoi (Vladykov, 1955). J Appl Ichthyol 28(4):489–495. CrossRefGoogle Scholar
  50. Ross ST (2001) The inland fishes of Mississippi. University Press of Mississippi, JacksonGoogle Scholar
  51. Ross ST, Slack WT, Heise RJ, Dugo MA, Rogillio H, Bowen BR, Mickle P, Heard RW (2009) Estuarine and coastal habitat use of gulf sturgeon (Acipenser oxyrinchus desotoi) in the north-central Gulf of Mexico. Estuar Coasts 32(2):360–374. CrossRefGoogle Scholar
  52. Secor DH, Anders PJ, Van Winkle W, Dixon DA (2002) Can we study sturgeons to extinction? What we do and don't know about the conservation of north American sturgeons. In: Van Winkle W, Anders PJ, Secor DH, Dixon DA (eds) Biology, management, and protection of north American sturgeons. American Fisheries Society, Bethesda, p 3–9Google Scholar
  53. Sellheim K, Willmes M, Hobbs JA, Glessner JJG, Jackson ZJ, Merz JE (2017) Validating fin ray microchemistry as a tool to reconstruct the migratory history of white sturgeon Acipenser transmontanus. Trans Am Fish Soc 146(5):844–857. CrossRefGoogle Scholar
  54. Stevenson JT, Secor DH (1999) Age determination and growth of Hudson River Atlantic sturgeon, Acipenser oxyrinchus. Fish Bull 97:153–166Google Scholar
  55. Sturrock AM, Hunter E, Milton JA, EIMF, Johnson RC, Waring CP, Trueman CN (2015) Quantifying physiological influences on otolith microchemistry. Methods Ecol Evol 6(7):806–816. CrossRefGoogle Scholar
  56. Sulak KJ, Clugston JP (1998) Early life history stages of gulf sturgeon in the Suwannee River, Florida. Trans Am Fish Soc 127(5):758–771.<0758:ELHSOG>2.0.CO;2 CrossRefGoogle Scholar
  57. Sulak KJ, Clugston JP (1999) Recent advances in life history of Gulf of Mexico sturgeon, Acipenser oxyrinchus desotoi, in the Suwannee River, Florida, USA: a synopsis. J Appl Ichthyol 15(4–5):116–128. CrossRefGoogle Scholar
  58. Sulak KJ, Randall M (2002) Understanding sturgeon life history: enigmas, myths, and insights from scientific studies. J Appl Ichthyol 18(4-6):519–528. CrossRefGoogle Scholar
  59. Sulak KJ, Randall MT, Edwards RE, Summers TM, Luke KE, Smith WT, Norem AD, Harden WM, Lukens RH, Parauka F, Bolden S, Lehnert R (2009) Defining winter trophic habitat of juvenile gulf sturgeon in the Suwanee and Apalachicola rivermouth estuaries, acoustic telemetry investigations. J Appl Ichthyol 25(5):505–515. CrossRefGoogle Scholar
  60. U.S. Fish and Wildlife Service and Gulf States Marine Fisheries Commission (1995) Gulf sturgeon recovery plan. Fish and Wildlife, Atlanta, p 170Google Scholar
  61. Veinott G, Northcote T, Rosenau M, Evans RD (1999) Concentrations of strontium in the pectoral fin rays of the white sturgeon (Acipenser transmontanus) by laser ablation sampling - inductively coupled plasma - mass spectrometry as an indicator of marine migrations. Can J Fish Aquat Sci 56(11):1981–1990. CrossRefGoogle Scholar
  62. Waldman JR, Grunwald C, Stabile J, Wirgin I (2002) Impacts of life history and biogeography on the genetic stock structure of Atlantic sturgeon Acipenser oxyrinchus oxyrinchus, gulf sturgeon A. oxyrinchus desotoi, and shortnose sturgeon A. brevirostrum. J Appl Ichthyol 18(4-6):509–518. CrossRefGoogle Scholar
  63. Walther BD, Thorrold SR (2006) Water, not food, contributes the majority of strontium and barium deposited in the otoliths of a marine fish. Mar Ecol Prog Ser 311:125–130. CrossRefGoogle Scholar
  64. Willmes M, Glessner JJG, Carleton SA, Gerrity PC, Hobbs JA (2016) 87Sr/86Sr isotope ratio analysis by laser ablation MS-ICP-MS in scales, spines, and fin rays as a non-lethal alternative to otoliths for reconstructing fish life history. Can J Fish Aquat Sci doi 73(12):1852–1860. CrossRefGoogle Scholar
  65. Wright PJ, Panfili J, Morales-Nin B, Geffen AJ (2002) Types of calcified structures. In: Panfili J, Pontual H, Troadec H, Wright PJ (eds) Manual of fish sclerochronology. Ifremer-IRD coedition, Brest, France, pp 30–88Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • P. J. Allen
    • 1
  • R. J. DeVries
    • 1
  • D. A. Fox
    • 2
  • R. I. Gabitov
    • 3
  • W. G. Anderson
    • 1
    • 4
  1. 1.Department of Wildlife, Fisheries and AquacultureMississippi State UniversityMississippi StateUSA
  2. 2.Department of Agriculture and Natural ResourcesDelaware State UniversityDoverUSA
  3. 3.Department of GeosciencesMississippi State UniversityMississippi StateUSA
  4. 4.Department of Biological SciencesUniversity of ManitobaWinnipegCanada

Personalised recommendations