Environmental Biology of Fishes

, Volume 100, Issue 3, pp 193–207 | Cite as

Structural complexity mediates functional structure of reef fish assemblages among coral habitats

  • Laura E. Richardson
  • Nicholas A. J. Graham
  • Morgan S. Pratchett
  • Andrew S. Hoey
Article

Abstract

Coral community composition varies considerably due to both environmental conditions and disturbance histories. However, the extent to which coral composition influences associated fish assemblages remains largely unknown. Here an ecological trait-based ordination analysis was used to compare functional richness (range of unique trait combinations), functional evenness (weighted distribution of fishes with shared traits), and functional divergence (proportion of total abundance supported by species with traits on the periphery of functional space) of fish assemblages among six distinct coral habitats. Despite no significant variation in species richness among habitats, there were differences in the functional richness and functional divergence, but not functional evenness, of fish assemblages among habitats. Structural complexity of coral assemblages was the best predictor of the differences in functional richness and divergence among habitats. Functional richness of fish assemblages was highest in branching Porites habitats, lowest in Pocillopora and soft coral habitats, and intermediate in massive Porites, staghorn Acropora, and mixed coral habitats. Massive and branching Porites habitats displayed greater functional divergence in fish assemblages than the Pocillopora habitat, whilst the remaining habitats were intermediate. Differences in functional richness and divergence were largely driven by the presence of small schooling planktivores in the massive and branching Porites habitats. These results indicate that differential structural complexity among coral communities may act as an environmental filter, affecting the distribution and abundance of associated species traits, particularly those of small-bodied schooling fishes.

Keywords

Coral composition Fish assemblage structure Functional diversity Traits Environmental filtering 

Notes

Acknowledgements

We thank Lizard Island Research Station for field support, and Valeriano Parravicini, Simon Brandl, Michael McWilliam, Rhondda Jones and Cindy Huchery for useful comments, statistical advice and data access. The comments of two reviewers improved the manuscript. This study was funded by the Australian Research Council to ASH (DE130100688) and NAJG (DE130101705).

Compliance with ethical standards

Funding

This study was funded by the Australian Research Council (ASH, DE130100688; and NAG, DE130101705).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was purely observational. No animals were collected or handled in any way by any of the authors.

Supplementary material

10641_2016_571_MOESM1_ESM.pdf (225 kb)
ESM 1 (PDF 225 kb)

References

  1. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723. doi: 10.1109/TAC.1974.1100705 CrossRefGoogle Scholar
  2. Alvarez-Filip L, Dulvy NK, Côté IM, Watkinson AR, Gill JA (2011a) Coral identity underpins architectural complexity on Caribbean reefs. Ecol Appl 21:2223–2231. doi: 10.1890/10-1563.1 CrossRefPubMedGoogle Scholar
  3. Alvarez-Filip L, Gill JA, Dulvy NK (2011b) Complex reef architecture supports more small-bodied fishes and longer food chains on Caribbean reefs. Ecosphere 2:118. doi: 10.1890/ES11-00185.1 CrossRefGoogle Scholar
  4. Alvarez-Filip L, Paddack MJ, Collen B, Robertson DR, Côté IM (2015) Simplification of Caribbean reef-fish assemblages over decades of coral reef degradation. PLoS One 10:e0126004. doi: 10.1371/journal.pone.0126004 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Aronson RB, Macintyre IG, Wapnick CM, O’Neill MW (2004) Phase shifts, alternative states, and the unprecedented convergence of two reef systems. Ecology 85:1876–1891. doi: 10.1890/03-0108 CrossRefGoogle Scholar
  6. Baird AH, Pratchett MS, Hoey AS, Herdiana Y, Campbell SJ (2013) Acanthaster planci is a major cause of coral mortality in Indonesia. Coral Reefs 32:803–812. doi: 10.1007/s00338-013-1025-1 CrossRefGoogle Scholar
  7. Bellwood DR, Hoey AS, Choat JH (2003) Limited functional redundancy in high diversity systems: resilience and ecosystem function on coral reefs. Ecol Lett 6:281–285. doi: 10.1046/j.1461-0248.2003.00432.x CrossRefGoogle Scholar
  8. Bellwood DR, Hughes TP, Folke C, Nyström M (2004) Confronting the coral reef crisis. Nature 429:827–833. doi: 10.1038/nature02691 CrossRefPubMedGoogle Scholar
  9. Bellwood DR, Hoey AS, Ackerman JL, Depczynski M (2006) Coral bleaching, reef fish community phase shifts and the resilience of coral reefs. Glob Chang Biol 12:1587–1594. doi: 10.1111/j.1365-2486.2006.01204.x CrossRefGoogle Scholar
  10. Bento R, Hoey AS, Bauman AG, Feary DA, Burt JA (2015) The implications of recurrent disturbances within the world’s hottest coral reef. Mar Pollut Bull. doi: 10.1016/j.marpolbul.2015.10.006 PubMedGoogle Scholar
  11. Berumen ML, Pratchett MS (2006) Recovery without resilience: persistent disturbance and long-term shifts in the structure of fish and coral communities at Tiahura Reef, Moorea. Coral Reefs 25:647–653. doi: 10.1007/s00338-006-0145-2 CrossRefGoogle Scholar
  12. Bonin MC (2012) Specializing on vulnerable habitat: Acropora selectivity among damselfish recruits and the risk of bleaching-induced habitat loss. Coral Reefs 31:287–297. doi: 10.1007/s00338-011-0843-2 CrossRefGoogle Scholar
  13. Bruno JF, Selig ER (2007) Regional decline of coral cover in the Indo-Pacific: timing, extent, and subregional comparisons. PLoS One 2:e711. doi: 10.1371/journal.pone.0000711 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer Sci Bus Media. doi: 10.1007/b97636 Google Scholar
  15. Chong-Seng KM, Nash KL, Bellwood DR, Graham NA (2014) Macroalgal herbivory on recovering versus degrading coral reefs. Coral Reefs 33:409–419. doi: 10.1007/s00338-014-1134-5 CrossRefGoogle Scholar
  16. Clarke KR, Warwick RM (2001) Change in marine communities: an approach to statistical analysis and interpretation, 2nd edn. Primer-e Ltd, Plymouth Marine Laboratory, Plymouth, UKGoogle Scholar
  17. Coker DJ, Wilson SK, Pratchett MS (2014) Importance of live coral habitat for reef fishes. Rev Fish Biol Fish 24:89–126. doi: 10.1007/s11160-013-9319-5 CrossRefGoogle Scholar
  18. Cornwell WK, Schwilk DW, Ackerly DD (2006) A trait-based test for habitat filtering: convex hull volume. Ecology 87:1465–1471. doi: 10.1890/0012-9658(2006)87[1465:ATTFHF]2.0.CO;2 CrossRefPubMedGoogle Scholar
  19. Darling ES, Alvarez-Filip L, Oliver TA, McClanahan TR, Côté IM (2012) Evaluating life-histroy strategies of reef corals from species traits. Ecol Lett 15:1378–1386. doi: 10.1111/j.1461-0248.2012.01861.x CrossRefPubMedGoogle Scholar
  20. Darling ES, McClanahan TR, Côté IM (2013) Life histories predict coral community disassembly under multiple stressors. Glob Chang Biol 19:1930–1940. doi: 10.1111/gcb.12191 CrossRefPubMedGoogle Scholar
  21. Diamond J (1975) Assembly of species communities. In: Cody ML, Diamond JM (eds) Ecology and evolution of communities. Harvard University Press, Cambridge, MA, pp 342–444Google Scholar
  22. Gardiner NM, Jones GP (2005) Habitat specialisation and overlap in a guild of coral reef cardinalfishes (Apogonidae). Mar Ecol Prog Ser 305:163–175. doi: 10.3354/meps305163 CrossRefGoogle Scholar
  23. Gardner TA, Côté IM, Gill JA, Grant A, Watkinson AR (2003) Long-term region-wide declines in Caribbean corals. Science 301:958–960. doi: 10.1126/science.1086050 CrossRefPubMedGoogle Scholar
  24. Graham NA, Nash KL (2013) The importance of structural complexity in coral reef ecosystems. Coral Reefs 32:315–326. doi: 10.1007/s00338-012-0984-y CrossRefGoogle Scholar
  25. Graham NA, Cinner JE, Norström AV, Nyström M (2014) Coral reefs as novel ecosystems: embracing new futures. Curr Opin Environ Sustain 7:9–14. doi: 10.1016/j.cosust.2013.11.023 CrossRefGoogle Scholar
  26. Graham NA, Jennings S, MacNeil MA, Mouillot D, Wilson SK (2015) Predicting climate-driven regime shifts versus rebound potential in coral reefs. Nature 518:94–97. doi: 10.1038/nature14140 CrossRefPubMedGoogle Scholar
  27. Guest JR, Baird AH, Maynard JA, Muttaqin E, Edwards AJ, Campbell SJ, Yewdall K, Affendi YA, Chou LM (2012) Contrasting patterns of coral bleaching susceptibility in 2010 suggest an adaptive response to thermal stress. PLoS One 7:e33353. doi: 10.1371/journal.pone.0033353 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742. doi: 10.1126/science.1152509 CrossRefPubMedGoogle Scholar
  29. Hoey AS, Bellwood DR (2009) Limited functional redundancy in a high diversity system: single species dominates key ecological process on coral reefs. Ecosystems 12:1316–1328. doi: 10.1007/s10021-009-9291-z CrossRefGoogle Scholar
  30. Hoey AS, Bellwood DR (2010) Cross-shelf variation in browsing intensity on the Great Barrier Reef. Coral Reefs 29:499–508. doi: 10.1007/s00338-010-0605-6 CrossRefGoogle Scholar
  31. Hoey AS, Pratchett MS, Cvitanovic C (2011) High macroalgal cover and low coral recruitment undermines the potential resilience of the world’s southernmost coral reef assemblages. PLoS One 6:e25824. doi: 10.1371/journal.pone.0025824 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Holbrook SJ, Schmitt RJ, Messmer V, Brooks AJ, Srinivasan M, Munday PL, Jones GP (2015) Reef fishes in biodiversity hotspots are at greatest risk from loss of coral species. PLoS One 10:e0124054. doi: 10.1371/journal.pone.0124054 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Hughes TP (1994) Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science 265:1547–1551CrossRefPubMedGoogle Scholar
  34. Hughes TP, Baird AH, Dinsdale EA, Moltschaniwskyj NA, Pratchett MS, Tanner JE, Willis BL (2012) Assembly rules of reef corals are flexible along a steep climatic gradient. Curr Biol 22:736–741. doi: 10.1016/j.cub.2012.02.068 CrossRefPubMedGoogle Scholar
  35. Johns KA, Osborne KO, Logan M (2014) Contrasting rates of coral recovery and reassembly in coral communities on the Great Barrier Reef. Coral Reefs 33:553–563. doi: 10.1007/s00338-014-1148-z CrossRefGoogle Scholar
  36. Jones GP, McCormick MI, Srinivasan M, Eagle JV (2004) Coral decline threatens fish biodiversity in marine reserves. Proc Natl Acad Sci U S A 101:8251–8253. doi: 10.1073/pnas.0401277101 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Keddy PA (1992) Assembly and response rules: two goals for predictive community ecology. J Veg Sci 3:157–164. doi: 10.2307/3235676 CrossRefGoogle Scholar
  38. Kerry JT, Bellwood DR (2015) The functional role of tabular structures for large reef fishes: avoiding predators or solar irradiance? Coral Reefs 34:693–702. doi: 10.1007/s00338-015-1275-1 CrossRefGoogle Scholar
  39. Komyakova V, Munday PL, Jones GP (2013) Relative importance of coral cover, habitat complexity and diversity in determining the structure of reef fish communities. PLoS One 8:e83178. doi: 10.1371/journal.pone.0083178 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Larsen TH, Williams NM, Kremen C (2005) Extinction order and altered community structure rapidly disrupt ecosystem functioning. Ecol Lett 8:538–547. doi: 10.1111/j.1461-0248.2005.00749.x CrossRefPubMedGoogle Scholar
  41. Legendre P, Legendre LF (1998) Numerical ecology. ElsevierGoogle Scholar
  42. Lokrantz J, Nyström M, Thyresson M, Johansson C (2008) The non-linear relationship between body size and function in parrotfishes. Coral Reefs 27:967–974. doi: 10.1007/s00338-008-0394-3 CrossRefGoogle Scholar
  43. Macarthur R, Levins R (1967) The limiting similarity, convergence, and divergence of coexisting species. Am Nat 101:377–385. doi: 10.1086/282505 CrossRefGoogle Scholar
  44. Madin JS, Connolly SR (2006) Ecological consequences of major hydrodynamic disturbances on coral reefs. Nature 444:477–480. doi: 10.1038/nature05328 CrossRefPubMedGoogle Scholar
  45. Maire E, Grenouillet G, Brosse S, Villéger S (2015) How many dimensions are needed to accurately assess functional diversity? A pragmatic approach for assessing the quality of functional spaces. Glob Ecol Biogeogr 24:728–740. doi: 10.1111/geb.12299 CrossRefGoogle Scholar
  46. Marnane MJ, Bellwood DR (2002) Diet and nocturnal foraging in cardinalfishes (Apogonidae) at One Tree Reef, Great Barrier Reef, Australia. Mar Ecol Prog Ser 231:261–268. doi: 10.3354/meps231261 CrossRefGoogle Scholar
  47. Marshall PA, Baird AH (2000) Bleaching of corals on the Great Barrier Reef: differential susceptibilities among taxa. Coral Reefs 19:155–163. doi: 10.1007/s003380000086 CrossRefGoogle Scholar
  48. Mason NW, Mouillot D, Lee WG, Wilson JB (2005) Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos 111:112–118. doi: 10.1111/j.0030-1299.2005.13886.x CrossRefGoogle Scholar
  49. Messmer V, Jones GP, Munday PL, Holbrook SJ, Schmitt RJ, Brooks AJ (2011) Habitat biodiversity as a determinant of fish community structure on coral reefs. Ecology 92:2285–2298. doi: 10.1890/11-0037.1 CrossRefPubMedGoogle Scholar
  50. Mouillot D, Bellwood DR, Baraloto C, Chave J, Galzin R, Harmelin-Vivien M, Kulbicki M, Lavergne S, Lavorel S, Mouquet N, Paine CE, Renaud J, Thuiller W (2013a) Rare species support vulnerable functions in high-diversity ecosystems. PLoS Biol 11:e1001569. doi: 10.1371/journal.pbio.1001569 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Mouillot D, Graham NA, Villeger S, Mason NW, Bellwood DR (2013b) A functional approach reveals community responses to disturbances. Trends Ecol Evol 28:167–177. doi: 10.1016/j.tree.2012.10.004 CrossRefPubMedGoogle Scholar
  52. Mouillot D, Villéger S, Parravicini V, Kulbicki M, Arias-González JE, Bender M, Chabanet P, Floeter SR, Friedlander A, Vigliola L, Bellwood DR (2014) Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. Proc Natl Acad Sci U S A 111:13757–13762. doi: 10.1073/pnas.1317625111 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Nash KL, Graham NA, Wilson SK, Bellwood DR (2013) Cross-scale habitat structure drives fish body size distributions on coral reefs. Ecosystems 16:478–490. doi: 10.1007/s10021-012-9625-0 CrossRefGoogle Scholar
  54. Nash KL, Graham NAJ, Jennings S, Wilson SK, Bellwood DR (2015) Herbivore cross-scale redundancy supports response diversity and promotes coral reef resilience. J Appl Ecol. doi: 10.1111/1365-2664.12430 Google Scholar
  55. Norström AV, Nyström M, Lokrantz J, Folke C (2009) Alternative states on coral reefs: beyond coral-macroalgal phase shifts. Mar Ecol Prog Ser 376:295–306. doi: 10.3354/meps07815 CrossRefGoogle Scholar
  56. Pandolfi JM, Connolly SR, Marshall DJ, Cohen AL (2011) Projecting coral reef futures under global warming and ocean acidification. Science 333:418–422. doi: 10.1126/science.1204794 CrossRefPubMedGoogle Scholar
  57. Pratchett MS, Munday PL, Wilson SK, Graham NA, Cinner JE, Bellwood DR, Jones GP, Polunin NV, McClanahan TR (2008) Effects of climate-induced coral bleaching on coral-reef fishes. Ecological and economic consequences. Oceanogr Mar Biol Annu Rev 46:251–296. doi: 10.1201/9781420065756.ch6 CrossRefGoogle Scholar
  58. Pratchett MS, Hoey AS, Wilson SK, Messmer V, Graham NA (2011) Changes in biodiversity and functioning of reef fish assemblages following coral bleaching and coral loss. Diversity 3:424–452. doi: 10.3390/d3030424 CrossRefGoogle Scholar
  59. Precht WF, Aronson RB, Moody RM, Kaufman L (2010) Changing patterns of microhabitat utilization by the threespot damselfish, Stegastes planifrons, on Caribbean Reefs. PLoS One 5:e10835. doi: 10.1371/journal.pone.0010835 CrossRefPubMedPubMedCentralGoogle Scholar
  60. R Development Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed 10 Jun 2016
  61. Rasher DB, Hoey AS, Hay ME (2013) Consumer diversity interacts with prey defenses to drive ecosystem function. Ecology 94:1347–1358. doi: 10.1890/12-0389.1 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Riegl BM, Purkis SJ (2009) Model of coral population response to accelerated bleaching and mass mortality in a changing climate. Ecol Model 220:192–208. doi: 10.1016/j.ecolmodel.2008.09.022 CrossRefGoogle Scholar
  63. Rogers A, Blanchard JL, Mumby PJ (2014) Vulnerability of coral reef fisheries to a loss of structural complexity. Curr Biol 24:1000–1005. doi: 10.1016/j.cub.2014.03.026 CrossRefPubMedGoogle Scholar
  64. Sano M, Shimizu M, Nose Y (1984) Changes in structure of coral reef fish communities by destruction of hermatypic corals: observational and experimental views. Pac Sci 38:51–79Google Scholar
  65. Shulman MJ (1984) Resource limitation and recruitment patterns in a coral reef fish assemblage. J Exp Mar Bio Ecol 74:85–109. doi: 10.1016/0022-0981(84)90039-X CrossRefGoogle Scholar
  66. van Woesik R, Sakai K, Ganase A, Loya Y (2011) Revisiting the winners and the losers a decade after coral bleaching. Mar Ecol Prog Ser 434:67–76. doi: 10.3354/meps09203 CrossRefGoogle Scholar
  67. Vázquez DP, Simberloff D (2002) Ecological specialization and susceptibility to disturbance: conjectures and refutations. Am Nat 159:606–623. doi: 10.1086/339991 CrossRefPubMedGoogle Scholar
  68. Veron JEN, Hoegh-Guldberg O, Lenton TM, Lough JM, Obura DO, Pearce-Kelly P, Sheppard CR, Spalding M, Stafford-Smith MG, Rogers AD (2009) The coral reef crisis: the critical importance of < 350 ppm CO2. Mar Pollut Bull 58:1428–1436. doi: 10.1016/j.marpolbul.2009.09.009 CrossRefPubMedGoogle Scholar
  69. Villéger S, Mason NWH, Mouillot D (2008) New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89:2290–2301. doi: 10.1890/07-1206.1 CrossRefPubMedGoogle Scholar
  70. Weiher E, Keddy P (2001) Ecological assembly rules: perspectives, advances, retreats. Cambridge University PressGoogle Scholar
  71. Wellington GM, Victor BC (1985) El Niño mass coral mortality: a test of resource limitation in a coral reef damselfish population. Oecologia 68:15–19. doi: 10.1007/BF00379466 CrossRefGoogle Scholar
  72. Williams GJ, Smith JE, Conkin EJ, Gove JM, Sala E, Sandin SA (2013) Benthic communities at two remote Pacific coral reefs: effects of reef habitat, depth, and wave energy gradients on spatial patterns. PeerJ 1:e81. doi: 10.7717/peerj.81 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Wilson SK, Graham NA, Pratchett MS, Jones GP, Polunin NV (2006) Multiple disturbances and the global degradation of coral reefs: are reef fishes at risk or resilient? Glob Chang Biol 12:2220–2234. doi: 10.1111/j.1365-2486.2006.01252.x CrossRefGoogle Scholar
  74. Wilson SK, Graham NA, Polunin NV (2007) Appraisal of visual assessments of habitat complexity and benthic composition on coral reefs. Mar Biol 151:1069–1076. doi: 10.1007/s00227-006-0538-3 CrossRefGoogle Scholar
  75. Wilson SK, Burgess SC, Cheal AJ, Emslie M, Fisher R, Miller I, Polunin NV, Sweatman HP (2008) Habitat utilization by coral reef fish: implications for specialists vs. generalists in a changing environment. J Anim Ecol 77:220–228. doi: 10.1111/j.1365-2656.2007.01341.x CrossRefPubMedGoogle Scholar
  76. Wilson SK, Fisher R, Pratchett MS, Graham NA, Dulvy NK, Turner RA, Cakacaka A, Polunin NV (2010) Habitat degradation and fishing effects on the size structure of coral reef fish communities. Ecol Appl 20:442–451. doi: 10.1890/08-2205.1 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Laura E. Richardson
    • 1
  • Nicholas A. J. Graham
    • 1
    • 2
  • Morgan S. Pratchett
    • 1
  • Andrew S. Hoey
    • 1
  1. 1.ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleAustralia
  2. 2.Lancaster Environment CentreLancaster UniversityLancasterUK

Personalised recommendations