Skip to main content
Log in

Gutsy genetics: identification of digested piscine prey items in the stomach contents of sympatric native and introduced warmwater catfishes via DNA barcoding

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Abstract

A major focus of ecology is understanding trophic relationships and energy flows in natural systems, associated food web dynamics and changes in food webs due to introduced species. Predator-prey interactions are often assessed by examining stomach contents. However, partially digested remains may be difficult to accurately identify by traditional visual analysis. Here we evaluate the effectiveness of DNA barcoding to identify digested piscine prey remains in invasive Blue Catfish Ictalurus furcatus, non-native, but established Channel Catfish Ictalurus punctatus and native White Catfish Ameiurus catus from Chesapeake Bay, USA. Stomach contents were examined and piscine prey items were scored as lightly digested, moderately digested or severely digested. A 652 base pair region of the cytochrome c oxidase subunit I (COI-5P) mitochondrial DNA gene was sequenced for each prey item. Edited barcode sequences were compared to locally-caught and validated reference sequences in BOLD (Barcode of Life Database). A large majority of prey items were sufficiently digested to limit morphological identification (9.4 % to species and an additional 12.1 % to family). However, overall barcoding success was high (90.3 %) with little difference among the digestion classifications. Combining morphological and genetic identifications, we classified 91.6 % of fish prey items to species. Twenty-three fish species were identified, including species undergoing active restoration efforts (e.g., Alosa spp.) and commercially important species, e.g., Striped Bass Morone saxatilis, White Perch Morone americana, American Eel Anguilla rostrata and Menhaden Brevoortia tyrannus. We found DNA barcoding highly successful at identifying all but the most heavily degraded prey items and to be an efficient and effective method for obtaining diet information to strengthen the resolution of trophic analyses including diet comparisons among sympatric native and non-native predators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • April J, Mayden RL, Hanner RH, Bernatchez L (2011) Genetic calibration of species diversity among North America’s freshwater fishes. Proc Natl Acad Sci U S A 108(26):10602–10607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arroyave J, Stiassny MLJ (2014) DNA barcoding reveals novel insights into pterygophagy and prey selection in distichodontid fishes (Characiformes: Distichodontidae. Ecol Evol 23(4):4534–4542

    Article  Google Scholar 

  • Baeza JA, Fuentes MS (2013) Exploring phylogenetic informativeness and nuclear copies of mitochondrial DNA (numts) in three commonly used mitochondrial genes: mitochondrial phylogeny of peppermint, cleaner, and semi-terrestrial shrimps (Caridea: Lysmata, Exhippolysmata, and Merguia). Zoo J Linn Soc-Lond 168:699–722

    Article  Google Scholar 

  • Baldwin CC, Mounts JH, Smith DG, Weigt LA (2009) Genetic identification and color descriptions of early life-history stages of Belizean Phaeoptyx and Astrapogon (Teleostei: Apogonidae) with comments on identification of adult Phaeoptyx. Zootaxa 2008:1–22

    Google Scholar 

  • Baldwin CC, Brito BJ, Smith DG, Weigt LA, Escobar-Briones E (2011) Identification of early life-history stages of Caribbean Apogon (Perciformes: Apogonidae) through DNA barcoding. Zootaxa 3133:1–36

    Google Scholar 

  • Bariche M, Torres M, Smith C, Sayar N, Azzurro E, Baker R, Bernardi G (2015) Red Sea fishes in the Mediterranean Sea: a preliminary investigation of a biological invasion using DNA barcoding. J Biogeogr 42:2363–2373

    Article  Google Scholar 

  • Barnett A, Redd KS, Frusher SD, Stevens JD, Semmens JM (2010) Non-lethal method to obtain stomach samples from a large marine predator and the use of DNA analysis to improve dietary information. J Exp Mar Biol Ecol 393:188–192

    Article  Google Scholar 

  • Beauchamp DA, Wahl DH, Johnson BM (2007) Predator-prey interactions. In: Guy CD, Brown ML (eds) Analysis and interpretation of freshwater fisheries data. American Fisheries Society, Bethesda, Maryland, pp. 765–842

    Google Scholar 

  • Berry O, Bulman C, Bunce M, Coghlan M, Murray DC, Ward RD (2015) Comparison of morphological and DNA metabarcoding analyses of diets in exploited marine fishes. Mar Ecol Prog Ser 540:167–181

    Article  CAS  Google Scholar 

  • Betancur-R R, Broughton RE, Wiley EO, Carpenter K, López JA, Li C, Holcroft NI, Arcila D, Sanciangco M, Cureton II JC, Zhang F, Buser T, Campbell MA, Ballesteros JA, Roa-Varon A, Willis S, Borden WC, Rowley T, Reneau PC, Hough DJ, Lu G, Grande T, Arratia G, Ortí G (2013) The Tree of Life and a New Classification of Bony Fishes. PLoS Curr Tree of Life. Apr 18. Edition 1. doi:10.1371/currents.tol.53ba26640df0ccaee75bb165c8c26288.

  • Boileau N, Cortesi F, Egger B, Muschick M, Indermaur A, Theis A, Büscher HH, Salzburger W (2015) A complex mode of aggressive mimicry in a scale-eating cichlid fish. Biol Lett 11(9):20150521

  • BOLD (2015) Barcode of Life Database (BOLD). Available: www. Boldsystems.org/. Accessed 15 December 2015

  • Braid HE, Deeds J, DeGrasse SL, Wilson JJ, Osborne J, Hanner RH (2012) Preying on commercial fisheries and accumulating paralytic shellfish toxins: a dietary analysis of invasive Dosidicus gigas (Cephalopoda Ommastrephidae) stranded in Pacific Canada. Mar Biol 159:25–31

    Article  CAS  Google Scholar 

  • Carreon-Martinez L, Johnson TB, Ludsin SA, Heath DD (2011) Utilization of stomach content DNA to determine diet diversity in piscivorous fishes. J Fish Biol 78:1170–1182

    Article  CAS  PubMed  Google Scholar 

  • Chandler L (1998) Trophic ecology of native and introduced catfishes in the tidal James River. Virginia Commonwealth University, Richmond Virginia. Master’s Thesis, 116p

  • Charles H, Dukes JS (2007) Impacts of invasive species on ecosystems services. In: W. Nentwig (ed.) biological invasions. Ecological Studies 193. Springer, Berlin, Germany. pp. 217–237

  • Chelsky Budarf A, Burfeind DD, Loh WK, Tibbetts IR (2011) Identification of seagrasses in the gut of a marine herbivorous fish using DNA barcoding and visual inspection. J Fish Biol 79:112–121

    Article  CAS  PubMed  Google Scholar 

  • Conway KW, Baldwin C, White MD (2014) Cryptic diversity and venom glands in western Atlantic clingfishes of the genus Acyrtus (Teleostei: Gobiesocidae). PLoS One 9(5): e97664

  • Cote IM, Green SJ, Morris JA, Akins JL, Steinke D (2013) Diet richness of indo-Pacific lionfish revealed by DNA barcoding. Mar Ecol Prog Ser 472:249–256

    Article  Google Scholar 

  • Dalton DI, Kotze A (2011) DNA barcoding as a tool for species identification in three forensic wildlife cases in South Africa. Forensic Sci Int 207:e51–e254

    Article  CAS  PubMed  Google Scholar 

  • de Barba M, Miquel C, Boyer F, Mercier C, Rioux D, Coissac E, Taberlet P (2014) DNA metabarcoding multiplexing and validation of data accuracy for diet assessment: application to omnivorous diet. Mol Ecol Resour 14:306–323

    Article  PubMed  Google Scholar 

  • Derr RE (2011) Performing exact regression with the SAS system. In: Proceedings of the 25th Annual SAS Users Group International Conference, April 2000, Cary, NC, USA Paper P254–P225

  • Dunn MR, Szabo A, McVeagh MS, Smith PJ (2010) The diet of deep water sharks and the benefits of using DNA identification of prey. Deep-Sea Res 57:923–930

    Article  CAS  Google Scholar 

  • Eggleton MA, Schramm HL (2004) Feeding ecology and energetic relationships with habitat of blue catfish Ictalurus furcatus and flathead catfish Pylodictis olivaris in the lower Mississippi River, USA. Environ Biol Fish 70:107–121

    Article  Google Scholar 

  • Ekrem T, Willassen E, Stur E (2007) A comprehensive DNA sequence library is essential for identification with DNA barcodes. Mol Phylogenet Evol 43:530–542

    Article  CAS  PubMed  Google Scholar 

  • Fritts TH, Rodda GH (1998) The role of introduced species in the degradation of island ecosystems: A case history of Guam. Annu Rev Ecol Syst 29:113–140

    Article  Google Scholar 

  • Gonçalves PFM, Oliveira-Marques AR, Matsumoto TE, Miyaki CY (2015) DNA Barcoding identifies illegal parrot trade. J Hered 106(S1):560–564

    Article  Google Scholar 

  • Graham K (1999) A review of the biology and management of blue catfish. In: Irwin ER, Hubert WA, Rabeni CF, Schramm HL, Coon T (ed.) Catfish 2000: Proceedings of the International Ictalurid Symposium Amer Fish Soc Symp 24 Bethesda, MD pp. 37–49

  • Greenlee RS, Lim CN (2011) Searching for equilibrium: Population parameters and variable recruitment in introduced Blue Catfish populations in four Virginia tidal river systems. In: Michaletz PH, Travnichek VH (ed.) Conservation, Ecology, and Management of Catfish: The Second International Symposium American Fisheries Society, Symposium 77, Bethesda, MD pp. 349–367

  • Handy SM, Deeds JR, Ivanova NV, Hebert PDN, Hanner RH, Ormos A, Weigt LA, Moore MM, Yancy HF (2011) A single-laboratory validated method for the generation of DNA barcodes for the identification of fish for regulatory compliance. J AOAC Int 94(1):201–210

    CAS  PubMed  Google Scholar 

  • Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. P R Soc London 270:313–321

    Article  CAS  Google Scholar 

  • Hebert PDN, Penton EH, Burns JM, Janzen DH, Hallwachs W (2004) Ten species in one: DNA barcoding reveals cryptic species in the neotropical kipper butterfly Astraptes fulgerator. Proc Natl Acad Sci U S A 101(41):14812–14817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hubert N, Hanner R, Holm E, Mandrak NE Taylor E (2008) Identifying Canadian freshwater fishes through DNA barcodes. PLoS One 3(6): e2490

  • Hyslop EJ (1980) Stomach contents analysis - a review of methods and their application. J Fish Biol 17:411–429

    Article  Google Scholar 

  • Ivanova NV, Zemlak TS, Hanner RH, Hebert PDN (2007) Universal primer cocktails for fish DNA barcoding. Mol Ecol Resour 7(4):544–548

    Article  CAS  Google Scholar 

  • Jenkins RE, Burkhead NM (1993) Freshwater fishes of Virginia. American Fisheries Society, Bethesda, Maryland

    Google Scholar 

  • Jo H, Gim JA, Jeong KS, Kim HS, Joo GJ (2014) Application of DNA barcoding for identification of freshwater carnivorous fish diets: is number of prey items dependent on size class for Micropterus salmoides? Ecol Evol 4:219–229

    Article  PubMed  Google Scholar 

  • Joly S, Davies TJ, Bruneau A, Derry A, Kembel SW, Peres-Neto P, Vamosi J, Wheeler TA (2014) Ecology in the age of DNA barcoding: the resource, the promise and the challenges ahead. Mol Ecol Resour 14(2):221–232

    Article  CAS  PubMed  Google Scholar 

  • Kress WJ, García-Robledo C, Uriarte M, Erickson DL (2015) DNA barcodes for ecology, evolution and conservation. Trends Ecol Evol 30(1):25–35

    Article  PubMed  Google Scholar 

  • Legler ND, Johnson TB, Heath DD, Ludsin S (2010) Water temperature and prey size effects on the rate of digestion of larval and early juvenile fish. Trans Am Fish Soc 139:868–875

    Article  Google Scholar 

  • Leray M, Knowlton N (2015) DNA barcoding and metabarcoding of standardized samples reveal patterns of marine benthic diversity. Proc Natl Acad Sci U S A 112(7):2076–2081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leray M, Yang JY, Meyer CP, Mills SC, Agudelo N, Ranwez V, Boehm JT, Machida RJ (2013) A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Front Zool 10:34

    Article  PubMed  PubMed Central  Google Scholar 

  • Leray M, Meyer CP, Mills SC (2015) Metabarcoding dietary analysis of coral dwelling predatory fish demonstrates the minor contribution of coral mutualists to their highly partitioned, generalist diet. PeerJ 3: e1047

  • MacAvoy SE, Macko SA, McIninch SP, Garman GC (2000) Marine nutrient contributions to freshwater apex predators. Oecologia 122:568–573

    Article  CAS  PubMed  Google Scholar 

  • MacAvoy SE, Garman GC, Macko SA (2009) Anadromous fish as marine nutrient vectors. Fish B-NOAA 107:165–174

    Google Scholar 

  • Méheust E, Alfonsi E, Le Ménec P, Hassani S, Jung J (2015) DNA barcoding for the identification of soft remains of prey in the stomach contents of grey seals (Halichoerus grypus) and harbour porpoises (Phocoena phocoena. Mar Biol Res 11(4):385–395

    Article  Google Scholar 

  • Miya M, Sato Y, Fukunaga T, Sado T, Poulsen JY, Sato K, Minamoto T, Yamamoto S, Yamanaka H, Araki H, Kondoh M, Iwasaki W (2015) MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. R Soc Open Sci 2: 150088

  • Moran Z, Orth DJ, Schmitt JD, Hallerman EM, Aguilar R (2015) Effectiveness of DNA barcoding for identifying piscine prey items in stomach contents of piscivorous catfishes. Environ Biol Fish 99(1):161–167

    Article  Google Scholar 

  • Murdy EO, Birdsong RS, Musick JA (1997) Fishes of Chesapeake Bay. Smithsonian Institution Press, Washington D. C

    Google Scholar 

  • Nagy ZT, Sonet G, Glaw F, Vences M (2012) First large-scale DNA barcoding assessment of reptiles in the biodiversity hotspot of Madagascar, based on newly designed COI primers. PLoS One 7(3): e34506

  • Paquin MM, Buckley TW, Hibpshman RE, Canino MF (2014) DNA-based identification methods of prey fish from stomach contents of 12 species of eastern North Pacific groundfish. Deep-Sea Res 85:110–117

    Article  CAS  Google Scholar 

  • Pompanon F, Deagle BE, Symondson WOC, Brown DS, Jarman SN, Taberlet P (2012) Who is eating what: diet assessment using next generation sequencing. Mol Ecol 21:1931–1950

    Article  CAS  PubMed  Google Scholar 

  • Ratnasingham S, Hebert PDN (2007) BOLD: the barcode of life data system (www.Barcodinglife.Org). Mol Ecol Notes 7: 355–364

  • Ratnasingham S, Hebert PDN (2013) A DNA-based registry for all animal species: the barcode index number (BIN) system. PLoS One 8(8): e66213

  • Rocha LA, Rocha CR, Baldwin CC, Weigt LA (2015) Invasive lionfish preying on critically endangered reef fish. Coral Reefs 34:803–806

    Article  Google Scholar 

  • Ross ST (2001) Inland Fishes of Mississippi. University Press of Mississippi, Jackson, MS. 624 pp.

  • Schloesser RW, Fabrizio MC, Latour RJ, Garman GC, Greenlee B, Groves M, Gartland J (2011) Ecological role of blue catfish in Chesapeake Bay communities and implications for management. In: Michaletz PH, Travnichek VH (ed.) conservation, ecology, and Management of Catfish: the second international symposium. Am Fish Soc Symp 77, Bethesda, Maryland. pp. 369–382

  • Schooley JD, Karam AP, Kresner BR, Marsh PC, Pacey CA, Thornbrugh DJ (2008) Detection of larval remains after consumption by fishes. Trans Am Fish Soc 137:1044–1049

    Article  Google Scholar 

  • Tuckey TD, Fabrizio MC (2010) Estimating relative juvenile abundance of ecologically important finfish in the Virginia portion of Chesapeake Bay. Project #F-104-R-14. Annual Report to Virginia Marine Resources Commission. Virginia Institute of Marine Science, Gloucester Point.

  • Valdez-Moreno M, Quintal-Lizama C, Gómez-Lozano R, García-Rivas MC (2012) Monitoring an alien invasion: DNA barcoding and the identification of lionfish and their prey on coral reefs of the Mexican Caribbean. PLoS One 7(6):e36636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vestheim H, Jarman SN (2008) Blocking primers to enhance PCR amplification of rare sequences in mixed samples – a case study on prey DNA in Antarctic krill stomachs. Front Zool 5:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PDN (2005) DNA barcoding Australia’s fish species. Philos Trans R Soc Lond Ser B Biol Sci 360(1462):1847–1857

    Article  CAS  Google Scholar 

  • Ward RD, Hanner R, Hebert PDN (2009) The campaign to DNA barcode all fishes FISH-BOL. J Fish Biol 74:329–356

    Article  CAS  PubMed  Google Scholar 

  • Weigt LA, Baldwin CC, Driskell A, Smith DG, Ormos A, Reyier EA (2012a) Using DNA barcoding to assess Caribbean reef fish biodiversity: expanding taxonomic and geographic coverage. PLoS One 7(7): e41059

  • Weigt LA, Driskell AC, Baldwin CC, Ormos A (2012b) DNA barcoding fishes. In: Lopez Erickson DL (ed) DNA barcodes: Methods and Protocols. Humana Press, New York City, NY, pp. 109–126

    Chapter  Google Scholar 

  • Wirta HK, Hebert PDN, Kaartinena R, Prosser SW, Várkonyi G, Roslin T (2014) Complementary molecular information changes our perception of food web structure. Proc Natl Acad Sci U S A 111(5):1885–1890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Worth S (1893) Report on the propagation and distribution of food-fishes. Rep U S Commissioner Fish Fish 1893:78–138

    Google Scholar 

Download references

Acknowledgments

This project was conducted with funding support from NOAA’s Chesapeake Bay Office award #NA11NMF4570231, the Smithsonian Institution administered by the Secretariat Office of the Consortium for the Barcode of Life, and the Laboratories of Analytical Biology of the National Museum of Natural History. We gratefully acknowledge Miranda Marvel, Brooke Weigel, Paige Roberts, Angela Owens, Keira Heggie, Mike Goodison, Kim Richie and Midge Kramer for assistance with SERC field collections and sample processing and Timothy Groves, Branson Williams and Ross Williams for MD DNR field collections and sample processing. We would also like to thank Dr. Paul J. Smith (University of Maryland) for his statistical guidance. Internships provided to MM, BW and AO were also funded by NOAA’s Chesapeake Bay Office award #NA11NMF4570231 and MO was partially funded by a Smithsonian Environmental Research Center (SERC) postdoctoral fellowship. This project was reviewed by SERC’s Institutional Animal Care and Use Committee (IACUC) and all applicable international, national, and/or institutional guidelines for humane animal care and use were followed. The manuscript was strengthened by comments from 3 anonymous peer reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Aguilar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguilar, R., Ogburn, M.B., Driskell, A.C. et al. Gutsy genetics: identification of digested piscine prey items in the stomach contents of sympatric native and introduced warmwater catfishes via DNA barcoding. Environ Biol Fish 100, 325–336 (2017). https://doi.org/10.1007/s10641-016-0523-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10641-016-0523-8

Keywords

Navigation