Environmental Biology of Fishes

, Volume 98, Issue 6, pp 1541–1554 | Cite as

Herbivory and seasonal changes in diet of a highly endemic cyprinodontid fish (Aphanius farsicus)

  • Carles Alcaraz
  • Zeinab Gholami
  • Hamid Reza Esmaeili
  • Emili García-Berthou


Trophic ecology is essential to understand ecosystem functioning and structure and assist biological conservation. Here we investigate, for the first time, the feeding ecology of Aphanius farsicus, a cyprinodontid fish endemic of a single landlocked river basin in central Iran. We sampled monthly a population of this fish species during a year and examined differences in food across seasons, sexes and sizes. Similarly to other cyprinodonts, A. farsicus showed sexual dimorphism and more abundance of females. Size structure and individual condition varied across seasons, with larger fish in spring and better condition in summer and less in winter. We found no empty guts, suggesting that these fish feed all year round due to the warm climate of its native distribution. Farsi toothcarp diet was based on detritus, algae (particularly diatoms, green algae, and cyanobacteria), and small invertebrates. Seasonal variation in diet was more important than variation due to fish size and the Farsi toothcarp consumed more green algae in spring and early summer and more diatoms and insects the rest of the year. Herbivory was considerable, similarly to a few other cyprinodonts, and increased with fish size, particularly because of higher consumption of green algae. As with species composition in diet, season was more important than size in the variation of number, biovolume, mean size, and diversity of prey captured, with higher number, richness and size of prey captured in summer. The ontogenetic diet shift was less marked in this cyprinodont than in many other Aphanius species, probably due to its reduced size and the resource availability of its habitat, but was also shown by size-dependent feeding selectivity for a few invertebrates.


Herbivory Temperature Cyprinodontidae Farsi toothcarp Semi-arid regions Maharlu Basin Iran 



Financial support was provided by the Deutscher Akademischer Austauschdienst (DAAD) through a doctoral fellowship to ZG and by the Spanish Ministry of Science (projects CGL2009-12877-C02-01 and Consolider-Ingenio 2010 CSD2009-00065). We would like to thank A.R. Khosravi (Shiraz University) for plant identification, A. Gholamhosseini (Mashhad University) for field assistance, and S. Hosseini (Ostavani), F. Hosseini (Shiraz University) and two anonymous reviewers for helpful comments.


  1. Abatzopoulos TJ, Agh N, Van Stappen G, Rouhani SM, Sorgeloos P (2006) Artemia sites in Iran. J Marine Biol Assoc UK 86:299–307. doi: 10.1017/S0025315406013154 CrossRefGoogle Scholar
  2. Abell R (2002) Conservation biology for the biodiversity crisis: a freshwater follow-up. Conserv Biol 16:1435–1437. doi: 10.1046/j.1523-1739.2002.01532.x CrossRefGoogle Scholar
  3. Abilhoa V, Vitule JRS, Bornatowski H (2010) Feeding ecology of Rivulus luelingi (Aplocheiloidei: Rivulidae) in a coastal Atlantic rainforest stream, southern Brazil. Neotropical Ichthyol 8:813–818. doi: 10.1590/S1679-62252010005000012 CrossRefGoogle Scholar
  4. Alcaraz C, García-Berthou E (2007a) Food of an endangered cyprinodont (Aphanius iberus): ontogenetic diet shift and prey electivity. Environ Biol Fish 78:193–207. doi: 10.1007/s10641-006-0018-0 CrossRefGoogle Scholar
  5. Alcaraz C, García-Berthou E (2007b) Life history variation of invasive mosquitofish (Gambusia holbrooki) along a salinity gradient. Biol Conserv 139:83–92. doi: 10.1016/j.biocon.2007.06.006 CrossRefGoogle Scholar
  6. Alcaraz C, Bisazza A, García-Berthou E (2008a) Salinity mediates the competitive interactions between invasive mosquitofish and an endangered fish. Oecologia 155:205–213. doi: 10.1007/s00442-007-0899-4 CrossRefPubMedGoogle Scholar
  7. Alcaraz C, Pou-Rovira Q, García-Berthou E (2008b) Use of a flooded salt marsh habitat by an endangered cyprinodontid fish (Aphanius iberus). Hydrobiologia 600:177–185. doi: 10.1007/s10750-007-9230-y CrossRefGoogle Scholar
  8. Al-Daham NK, Huq MF, Sharma KP (1977) Notes on the ecology of fishes of genus Aphanius and Gambusia affinis in Southern Iraq. Freshw Biol 7:245–251. doi: 10.1111/j.1365-2427.1977.tb01672.x CrossRefGoogle Scholar
  9. Amin OM, Gholami Z, Akhlaghi M, Heckmann RA (2013) The description and host-parasite relationships of a new quadrigyrid species (Acanthocephala) from the Persian tooth-carp, Aphanius farsicus (Actinoptreygii: Cyprinodontidae) in Iran. J Parasitol 99:257–263. doi: 10.1645/GE-3247.1 CrossRefPubMedGoogle Scholar
  10. APHA, AWWA, WPCF (2001) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Washington D. CGoogle Scholar
  11. Arthur R, Done TJ, Marsh H, Harriott V (2006) Local processes strongly influence post-bleaching benthic recovery in the Lakshadweep atolls. Coral Reefs 25:427–440. doi: 10.1007/s00338-006-0127-4 CrossRefGoogle Scholar
  12. Bakhtiyari M, Kamal S, Abdoli A, Esmaeili HR, Ebrahimi M (2011) Comparison of the feeding behaviour and strategy of the Killifish, Aphanius sophiae Heckel, 1847, at two different localities in Iran. Zool Middle East 52:47–56CrossRefGoogle Scholar
  13. Benejam L, Alcaraz C, Sasal P, Simon-Levert G, García-Berthou E (2009) Life history and parasites of the invasive mosquitofish (Gambusia holbrooki) along a latitudinal gradient. Biol Invasions 11:2265–2277. doi: 10.3897/zookeys.215.1731 CrossRefGoogle Scholar
  14. Brown KM, Ewins PJ (1996) Technique-dependent biases in determination of diet composition: an example with ring-billed gulls. Condor 98:34–41. doi: 10.2307/1369505 CrossRefGoogle Scholar
  15. Coad BW (2000) Distribution of Aphanius species in Iran. J Am Killifish Assoc 33:183–191Google Scholar
  16. Coad BW (2014) Freshwater fishes of Iran. Available at http://www.briancoad.com. Retrieved September 2014
  17. Costello MJ (1990) Predator feeding strategy and prey importance: a new graphical analysis. J Fish Biol 36:261–263. doi: 10.1111/j.1095-8649.1990.tb05601.x CrossRefGoogle Scholar
  18. Esmaeili HR, Shiva AH (2006) Reproductive biology of the Persian Tooth-carp, Aphanius persicus (Jenkins, 1910) (Cyprinodontidae), in southern Iran. Zool Middle East 37:39–46CrossRefGoogle Scholar
  19. Fouda MM (1995) Life history strategies of four small‐size fishes in the Suez Canal, Egypt. J Fish Biol 46:687–702. doi: 10.1111/j.1095-8649.1995.tb01104.x CrossRefGoogle Scholar
  20. Frenkel V, Goren M (1997) Some environmental factors affecting the reproduction of Aphanius dispar (Rüppell, 1828). Hydrobiologia 347:197–207. doi: 10.1023/A:1003000225293 CrossRefGoogle Scholar
  21. Frenkel V, Goren M (2000) Factors affecting growth of killifish, Aphanius dispar, a potential biological control of mosquitoes. Aquaculture 184:255–265. doi: 10.1016/S0044-8486(99)00326-9 CrossRefGoogle Scholar
  22. García-Berthou E (1999) Food of introduced mosquitofish: ontogenetic diet shift and prey selection. J Fish Biol 55:135–147. doi: 10.1006/jfbi.1999.0983 CrossRefGoogle Scholar
  23. García-Berthou E, Moreno-Amich R (1993) Multivariate analysis of covariance in morphometric studies of the reproductive cycle. Can J Fish Aquat Sci 50:1394–1399. doi: 10.1139/f93-159 CrossRefGoogle Scholar
  24. García-Berthou E, Alcaraz C, Pou-Rovira Q, Zamora L, Coenders G, Feo C (2005) Introduction pathways and establishment rates of invasive aquatic species in Europe. Can J Fish Aquat Sci 62:453–463. doi: 10.1139/F05-017 CrossRefGoogle Scholar
  25. Graham JH, Vrijenhoek RC (1988) Detrended correspondence analysis of dietary data. T Am Fish Soc 117:29–36. doi: 10.1577/1548-8659(1988)117%3c0029:DCAODD%3e2.3.CO;2 CrossRefGoogle Scholar
  26. Greenacre M (2013) The contributions of rare objects in correspondence analysis. Ecology 94:241–249. doi: 10.1890/11-1730.1 CrossRefPubMedGoogle Scholar
  27. Haas R (1982) Notes on the ecology of Aphanius dispar (Pisces, Cyprinodontidae) in the Sultanate of Oman. Freshw Biol 12:89–95. doi: 10.1111/j.1365-2427.1982.tb00605.x CrossRefGoogle Scholar
  28. Hoey AS, Bellwood DR (2011) Suppression of herbivory by macroalgal density: a critical feedback on coral reefs? Ecol Lett 14:267–273. doi: 10.1111/j.1461-0248.2010.01581.x CrossRefPubMedGoogle Scholar
  29. Hrbek T, Keivany Y, Coad BW (2006) New species of Aphanius (Teleostei, Cyprinodontidae) from Isfahan Province of Iran and a reanalysis of other Iranian species. Copeia 244–255. doi: 10.1643/0045-8511(2006)6%5b244:NSOATC%5d2.0.CO;2
  30. Kalogianni E, Giakoumi S, Andriopoulou A, Chatzinikolaou Y (2010) Feeding ecology of the critically endangered Valencia letourneuxi (Valenciidae). Aquat Ecol 44:289–299. doi: 10.1007/s10452-009-9253-8 CrossRefGoogle Scholar
  31. Kamal S, Bakhtiyari M, Abdoli A, Eagderi S, Karami M (2009) Life‐history variations of killifish (Aphanius sophiae) populations in two environmentally different habitats in central Iran. J Appl Ichthyol 25:474–478. doi: 10.1016/S0165-7836(98)00082-4 CrossRefGoogle Scholar
  32. Keivany Y, Soofiani N (2004) Contribution to the biology of Zagros tooth-carp, Aphanius vladykovi (Cyprinodontidae) in central Iran. Environ Biol Fish 71:165–169. doi: 10.1007/s10641-004-0106-y CrossRefGoogle Scholar
  33. Kneib RT (1986) The role of Fundulus heteroclitus in salt marsh trophic dynamics. Am Zool 26:259–269Google Scholar
  34. Kottelat M, Freyhof J (2007) Handbook of European freshwater fishes. Publications Kottelat, CornolGoogle Scholar
  35. Leonardos I (2008) The feeding ecology of Aphanius fasciatus (Valenciennes, 1821) in the lagoonal system of Messolongi (western Greece). Sci Mar 72:393–401CrossRefGoogle Scholar
  36. Meffe GK, Snelson FF Jr (1989) Ecology and evolution of livebearing fishes (Poeciliidae). Prentice-Hall, New JerseyGoogle Scholar
  37. Minckley CO, Deacon JE (1975) Foods of the devil’s hole pupfish, Cyprinodon diabolis (Cyprinodontidae). Southwest Nat 20:105–111CrossRefGoogle Scholar
  38. Monsefi M, Shiva AH, Esmaeili HR (2009) Gonad histology of the Persian tooth-carp Aphanius persicus (Jenkins, 1910) (Cyprinodontidae) in Southern Iran. Turk J Zool 33:27–33. doi: 10.3906/zoo-0712-9 Google Scholar
  39. Monsefi M, Gholami Z, Esmaeili HR (2010) Histological and morphological studies of digestive tube and liver of the Persian tooth-carp, Aphanius persicus (Actinopterygii: Cyprinodontidae). IUFS J Biol 69:57–64Google Scholar
  40. Naiman RJ (1979) Preliminary food studies of Cyprinodon macularius and Cyprinodon nevadensis (Cyprinodontidae). Southwest Nat 24:538–541CrossRefGoogle Scholar
  41. Najafi G, Ghobadian B, Yusuf TF (2011) Algae as a sustainable energy source for biofuel production in Iran: a case study. Renew Sust Energ Rev 15:3870–3876. doi: 10.1016/j.rser.2011.07.010 CrossRefGoogle Scholar
  42. Olson DM, Dinerstein E, Powell GVN, Wikramanayake ED (2002) Conservation biology for the biodiversity crisis. Conserv Biol 16:1–3. doi: 10.1046/j.1523-1739.2002.01612.x CrossRefGoogle Scholar
  43. Parenti LR (1981) A phylogenetic and biogeographic analysis of cyprinodontiform fishes (Teleostei, Atherinomorpha). Bull Am Mus Nat Hist 168:335–557Google Scholar
  44. Parker A, Kornfield I (1995) Molecular perspective on evolution and zoogeography of cyprinodontid killifishes (Teleostei; Atherinomorpha). Copeia 1995:8–21CrossRefGoogle Scholar
  45. Pyke GH (2005) A review of the biology of Gambusia affinis and G. holbrooki. Rev Fish Biol Fish 15:339–365. doi: 10.1007/s11160-006-6394-x CrossRefGoogle Scholar
  46. Rahnemaei M, Zare M, Nematollahi AR, Sedghi H (2005) Application of spectral analysis of daily water level and spring discharge hydrographs data for comparing physical characteristics of karstic aquifers. J Hydrol 311:106–116. doi: 10.1016/j.jhydrol.2005.01.011 CrossRefGoogle Scholar
  47. Ramos-Jiliberto R, Valdovinos FS, Arias J, Alcaraz C, García-Berthou E (2011) A network-based approach to the analysis of ontogenetic diet shifts: an example with an endangered, small-sized fish. Ecol Complex 8:123–129. doi: 10.1016/j.ecocom.2010.11.005 CrossRefGoogle Scholar
  48. Santos AFGN, Alcaraz C, Santos LN, Hayashi C, García-Berthou E (2012) Experimental assessment of the effects of a Neotropical nocturnal piscivore on juvenile native and invasive fishes. Neotropical Ichthyol 10:167–176. doi: 10.1590/S1679-62252012000100016 CrossRefGoogle Scholar
  49. Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research. Freeman, New YorkGoogle Scholar
  50. Stephens DW, Brown JS, Ydenberg RC (2007) Foraging: behavior and ecology. University of Chicago PressGoogle Scholar
  51. Stevenson MM (1992) Food habits within the Laguna Chichancanab Cyprinodon (Pisces: Cyprinodontidae) species flock. Southwest Nat 37:337–343CrossRefGoogle Scholar
  52. Tabachnick BG, Fidell LS (2013) Using multivariate statistics. Pearson Education Inc, BostonGoogle Scholar
  53. Tabibzadeh I, Behbehani G, Nakhai R (1970) Use of Gambusia fish in the malaria eradication programme of Iran. Bull World Health Organ 43:623–626PubMedCentralPubMedGoogle Scholar
  54. Teimori A, Esmaeili HR, Reichenbacher B (2011) Aphanius farsicus, a replacement name for A. persicus (Jenkins, 1910) (Teleostei, Cyprinodontidae). Zootaxa 3096:53–58Google Scholar
  55. Teimori A, Esmaeili HR, Gholami Z, Zarei N, Reichenbacher B (2012) Aphanius arakensis, a new species of tooth-carp (Cyprinodontidae) from the endorheic Namak Lake Basin in Iran. ZooKeys 215:55–76. doi: 10.3897/zookeys.215.1731 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Carles Alcaraz
    • 1
    • 4
  • Zeinab Gholami
    • 2
  • Hamid Reza Esmaeili
    • 3
  • Emili García-Berthou
    • 4
  1. 1.IRTA Aquatic EcosystemsSant Carles de la RàpitaSpain
  2. 2.Department of Earth and Environmental Sciences, Palaeontology & Geobiology & GeoBio-Center LMULudwig-Maximilians-UniversityMunichGermany
  3. 3.Department of Biology, College of ScienceShiraz UniversityShiraz,Iran
  4. 4.Institute of Aquatic EcologyUniversity of GironaGironaSpain

Personalised recommendations