Environmental Biology of Fishes

, Volume 97, Issue 2, pp 215–222 | Cite as

The influence of gummy sharks, Mustelus antarcticus, on observed fish assemblage structure



Large predatory fish that alter the behaviour of smaller species may affect visual estimates of abundance by making organisms more or less difficult to observe and quantify. To evaluate the non-consumptive influence of large predators on rocky reef fishes observed with Baited Remote Underwater Video (BRUV), we tested the hypothesis that fish assemblages monitored when large (ca 1.5 m) piscivorous sharks, Mustelus antarcticus, were present differ from those observed when sharks were absent. We did this in two ways using recordings from rocky reefs in Batemans Marine Park, NSW, Australia. First, we examined 6 min of each 30 min tape; 3 min when sharks were present and 3 min when they were absent, in a paired sample design from 17 sites. Second, we compared fish assemblages for complete tapes (30 min) at sites with sharks present compared to sites where they were absent. The diversity and total abundance of fishes was consistently lower in the presence of sharks; we detected significant assemblage-wide change (PERMANOVA, P < 0.05). Importantly, the diversity and total abundance of fishes for complete tapes (30 min) decreased in the presence of sharks by 18 % and 36 %, respectively, underscoring the likelihood that sharks influence observed fish assemblages. Individual species responses were variable and while the abundance of many fish species decreased in response to sharks, others increased 6-fold. Overall, these results highlight the need to consider systematic differences in the abundance of large predators to avoid biases when testing hypotheses about fish assemblages using non-destructive visual methodologies.


Species interactions Elasmobranch Predator avoidance Fish species composition Rocky reef fishes 


  1. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46. doi:10.1111/j.1442-9993.2001.01070.pp.x Google Scholar
  2. Anderson MJ, Millar RB, Blom WM, Diebel CE (2005) Nonlinear multivariate models of successional change in community structure using the von Bertalanffy curve. Oecologia 146:279–286. doi:10.1007/s00442-005-0195-0 PubMedCrossRefGoogle Scholar
  3. Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA + for PRIMER: Guide to software and statistical methods. PRIMER-E, PlymouthGoogle Scholar
  4. Babcock RC, Kelly S, Shears NT, Walker JW, Willis TJ (1999) Changes in community structure in temperate marine reserves. Mar Ecol Prog Ser 189:125–134. doi:10.3354/meps189125 CrossRefGoogle Scholar
  5. Cappo M, Speare P, De’ath G (2004) Comparison of baited remote underwater video stations (BRUVS) and prawn (shrimp) trawls for assessments of fish biodiversity in inter-reefal areas of the Great Barrier Reef Marine Park. J Exp Mar Biol Ecol 302:123–152. doi:10.1016/j.jembe.2003.10.006 CrossRefGoogle Scholar
  6. Chapman DDF, Pikitch EK, Babcock EA (2006) Marine parks need sharks? Science 312:526–527. doi:10.1126/science.312.5773.526d PubMedCrossRefGoogle Scholar
  7. Cole RG (1994) Abundance, size-structure, and diver-oriented behaviour of three large benthic carnivorous fishes in a marine reserve in northeastern New Zealand. Biol Conserv 70:93–99. doi:10.1016/0006-3207(94)90276-3 CrossRefGoogle Scholar
  8. Collins M, Yau C, Nolan C, Bagley P, Priede I (1999) Behavioural observations on the scavenging fauna of the Patagonian slope. J Mar Biol Assoc UK 79:963–970. doi:10.1017/S0025315499001198 CrossRefGoogle Scholar
  9. Colton MA, Swearer SE (2010) A comparison of two survey methods: differences between underwater visual census and baited remote underwater video. Mar Ecol Prog Ser 400:19–36. doi:10.3354/meps08377 CrossRefGoogle Scholar
  10. Farnsworth KD, Thygesen UH, Ditlevsen S, King NJ (2007) How to estimate scavenger fish abundance using baited camera data. Mar Ecol Prog Ser 350:223–234. doi:10.3354/meps07190 CrossRefGoogle Scholar
  11. Fetterplace L (2011) Sand barrens or thriving oasis: Sanctuary zone effects on soft sediment fish assemblages. Unpublished B. Mar. Sci. (Hons) thesis, University of Wollongong pp. 107Google Scholar
  12. Frid A, Baker GG, Dill LM (2008) Do shark declines create fear-released systems? Oikos 117:191–201. doi:10.3354/meps07190 CrossRefGoogle Scholar
  13. Godin JJ (1997) Behavioural ecology of teleost fishes. Oxford University Press, OxfordGoogle Scholar
  14. Gomon M, Bray D, Kuiter R (2008) Fishes of Australia’s southern coast. Reed New Holland, SydneyGoogle Scholar
  15. Grabowski JH, Kimbro DL (2005) Predator-avoidance behavior extends trophic cascades to refuge habitats. Ecology 86:1312–1319. doi:10.1890/04-1216 CrossRefGoogle Scholar
  16. Kingsford MJ (1998) Reef fishes. In: Kingsford MJ, Battershill, C (eds) Studying temperate marine environments. pp 132–165Google Scholar
  17. Kulbicki M (1998) How the acquired behaviour of commercial reef fishes may influence the results obtained from visual censuses. J Exp Mar Biol Ecol 222:11–30. doi:10.1016/S0022-0981(97)00133-0 CrossRefGoogle Scholar
  18. Lester S, Halpern BS, Grorud-Colvert K, Lubchenco J, Ruttenberg BI, Gaines SD, Airamé S, Warner RR (2009) Biological effects within no-take marine reserves: a global synthesis. Mar Ecol Prog Ser 384:33–46. doi:10.3354/meps08029 CrossRefGoogle Scholar
  19. Lima SL (1998) Nonlethal effects in the ecology of predator–prey interactions: what are the ecological effects of anti-predator decision-making? Bioscience 48:25–34. doi:10.2307/1313225 CrossRefGoogle Scholar
  20. Lima SL, Dill LM (1990) Behavioural decisions made under the risk of predation: a review and prospectus. Can J Zool 69:619–640. doi:10.1139/z90-092 CrossRefGoogle Scholar
  21. Malcolm HA, Gladstone W, Lindfield S, Wraith J, Lynch TP (2007) Spatial and temporal variation in reef fish assemblages of marine parks in New South Wales, Australia—baited video observations. Mar Ecol Prog Ser 350:277–290. doi:10.3354/meps07195 CrossRefGoogle Scholar
  22. Pitcher TJ (1993) Behaviour of teleost fishes, 2nd edn. Chapman and Hall, LondonCrossRefGoogle Scholar
  23. Roberts CM, Hawkins JP (2000) Fully-protected marine reserves: A guide. WWF Endangered Seas Campaign, Washington DCGoogle Scholar
  24. Walker TI (2007) Spatial and temporal variation in the reproductive biology of gummy shark Mustelus antarcticus (Chondrichthyes: Triakidae) harvested off southern Australia. Mar Freshw Res 58:67–97. doi:10.1071/MF06074 CrossRefGoogle Scholar
  25. Watson DL, Harvey ES (2007) Behaviour of temperate and sub-tropical reef fishes towards a stationary SCUBA diver. Mar Freshw Behav Physiol 40:85–103. doi:10.1080/10236240701393263 CrossRefGoogle Scholar
  26. Watson DL, Harvey ES, Kendrick GA, Nardi K, Anderson MJ (2007) Protection from fishing alters the species composition of fish assemblages in a temperate-tropical transition zone. Mar Biol 152:1197–1206. doi:10.1007/s00227-007-0767-0 CrossRefGoogle Scholar
  27. Watson DL, Harvey ES, Fitzpatrick BM, Langlois TJ, Shedrawi G (2010) Assessing reef fish assemblage structure: how do different stereo-video techniques compare? Mar Biol 157:1237–1250. doi:10.1007/s00227-010-1404-x CrossRefGoogle Scholar
  28. Willis TJ, Babcock RC (2000) A baited underwater video system for the determination of relative density of carnivorous reef fish. Mar Freshw Res 51:755–763. doi:10.1071/MF00010 CrossRefGoogle Scholar
  29. Willis TJ, Millar RB, Babcock RC (2000) Detection of spatial variability in relative density of fishes: comparison of visual census, angling, and baited underwater video. Mar Ecol Prog Ser 198:249–260. doi:10.3354/meps198249 CrossRefGoogle Scholar
  30. Willis TJ, Millar RB, Babcock RC (2003) Protection of exploited fish in temperate regions: high density and biomass of snapper Pagrus auratus (Sparidae) in northern New Zealand marine reserves. J Appl Ecol 40:214–227. doi:10.1046/j.1365-2664.2003.00775.x CrossRefGoogle Scholar
  31. Wirsing AJ, Heithaus MR, Dill LM (2007) Fear factor: do dugongs (Dugong dugon) trade food for safety from tiger sharks (Galeocerdo cuvier)? Oecologia 153:1031–1040. doi:10.1007/s00442-007-0802-3 PubMedCrossRefGoogle Scholar
  32. Wirsing AJ, Frid A, Dill LM (2008) Seascapes of fear: evaluating sublethal predator effects experienced and generated by marine mammals. Mar Mamm Sci 24:1–15. doi:10.1111/j.1748-7692.2007.00167.x CrossRefGoogle Scholar
  33. Zar JH (1999) Biostatistical analysis, 4th edn. Prentice-Hall, New JerseyGoogle Scholar
  34. Zintzen V, Roberts D, Anderson MJ, Stewart AL, Struthers CD, Harvey ES (2011) Hagfish predatory behaviour and slime defence mechanism. Sci Rep 1(131):1–6. doi:10.1038/srep00131 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • J. Klages
    • 1
  • A. Broad
    • 1
  • B. P. Kelaher
    • 2
  • A. R. Davis
    • 1
  1. 1.Institute for Conservation Biology & Environmental Management, School of Biological SciencesUniversity of WollongongWollongongAustralia
  2. 2.National Marine Science Centre, School of Environment, Science and EngineeringSouthern Cross UniversityCoffs HarbourAustralia

Personalised recommendations