Environmental Biology of Fishes

, Volume 96, Issue 12, pp 1377–1387

Seasonal response of fish assemblages to habitat fragmentation caused by an impoundment in a Neotropical river

  • A. B. Iacone Santos
  • R. J. Albieri
  • F. Gerson Araújo


Changes in fish assemblages between the zones above and below Funil dam in Southeastern Brazil were investigated to evaluate the possible impacts of this impoundment in two contrasting seasons: summer/wet and winter/dry. We expect differences in fish assemblage structure and in environmental conditions between seasons and between the reservoir and the zone downriver of the dam. A total of 3,579 individuals comprising 38 species, including six non-natives, were collected. As expected, the comparatively high habitat complexity and water flow regime of the downriver zone favored a richer and more abundant fish assemblage compared with the reservoir, especially in the wet season. In this period, water covers part of the riparian vegetation, increasing habitat availability and nutrient input. Additionally, the dam prevents upriver migration of rheophilics fish species such as the Characiformes Prochilodus lineatus and Leporinus copelandii, and the Siluriformes Pimelodus fur and Pimelodus maculatus, thus increasing shoals below the dam. Although the reservoir represents a simplified ecosystem highly influenced by non-native top predator species (e.g. the Perciformes Cichla kelberi and Plagioscion squamosissimus), seasonal processes (e.g. water level fluctuations and flood pulses) seem to play a role in structuring of the fish assemblage. Environmental variables, mainly turbidity, temperature, and conductivity were significantly associated to spatial-temporal patterns of fish assemblage. In this freshwater tropical reservoir, the spatial scale, rather than the seasonal changes in environmental variables, was the dominant factor structuring fish assemblage in the reservoir and in the zone downriver of the dam.


Funil reservoir Paraíba do Sul River Ichthyofauna Spatial-temporal structure Dams River fragmentation 


  1. Abrahams M, Kattenfeld M (1997) The role of turbidity as a constraint on predator–prey interactions in aquatic environments. Behav Ecol Sociobiol 40:169–174CrossRefGoogle Scholar
  2. Agostinho AA, Gomes LC, Veríssimo S, Okada EK (2004) Flood regime, dam regulation and fish in the Upper Paraná River: effects on assemblage attributes, reproduction and recruitment. Rev Fish Biol Fish 14:11–19CrossRefGoogle Scholar
  3. Agostinho AA, Thomaz SM, Gomes LC (2005) Conservation of the biodiversity of Brazil’s inland waters. Conserv Biol 19:646–652. doi:10.1111/j.1523-1739.2005.00701.x CrossRefGoogle Scholar
  4. Angermeier PL, Karr JR (1983) Fish communities among environmental gradients in a system of tropical streams. Environ Biol Fish 9:117–135. doi:10.1007/BF00690857 CrossRefGoogle Scholar
  5. Araújo NB, Tejerina-Garro FL (2009) Influence of environmental variables and anthropogenic pertubations on stream fish assembleges, Upper Paraná River, Central Brasil. Neotrop Ichthyol 7:31–38. doi:10.1590/S1679-62252009000100005 Google Scholar
  6. Araújo FG, Andrade CC, Santos RN, Santos AFGN, Santos LN (2005) Spatial and seasonal changes in the diet of Oligosarcus hepsetus (Characiformes, Characidae) in a Brazilian reservoir. Rev Bras Biol 65:1–8. doi:10.1590/S1519-69842007000400022 Google Scholar
  7. Bayley PB, Petrere M Jr (1989) Amazon fisheries: assessment methods, current status and management options. Can Spec Publ Fish Aquat Sci 106:385–398Google Scholar
  8. Benke AC (1990) A perspective on America’s vanishing streams. J N Am Benthol Soc 9:77–88CrossRefGoogle Scholar
  9. Bennemann ST, Capra LG, Galves W, Shibatta OA (2006) Dinâmica trófica de Plagioscion squamosissimus (Perciformes, Sciaenidae) em trechos de influência da represa Capivara (rios Paranapanema e Tibagi). Ihering Sér Zool 96:115–119. doi:10.1590/S0073-47212006000100020 CrossRefGoogle Scholar
  10. Branco CWC, Rocha MIA, Pinto GFS, Gômara GA, Filippo RD (2002) Limnological features of Funil Reservoir (R.J., Brazil) and indicator properties of rotifers and cladocerans of the zooplankton community. Lake Reserv Res Manag 7:87–92. doi:10.1046/j.1440-169X.2002.00177.x CrossRefGoogle Scholar
  11. Candolin U, Salesto T, Evers M (2007) Changed environmental conditions weaken sexual selection in sticklebacks. J Evol Biol 20:233–239PubMedCrossRefGoogle Scholar
  12. Capra LG, Bennemann ST (2009) Low feeding overlap between Plagioscion squamosissimus (Heckel, 1840) and Cichla monoculus (Spix & Agassiz, 1831), fishes introduced in tropical reservoir of South Brazil. Acta Limnol Bras 21:343–348Google Scholar
  13. Carvalho CEV, Torres JPM (2002) The ecohydrology of the Paraíba do Sul river, Southeast Brazil. In: McClain ME (ed) The ecohydrology of South American Rivers and Wetlands. The IAHS Series of Special Publications, Italy, pp 179–191Google Scholar
  14. Chagas RJ, Boccardo L (2006) The air-breathing cycle of Hoplosternum littorale (Hancock, 1828) (Siluriformes: Callichthyidae). Neotrop Ichthyol 4:371–373. doi:10.1590/S1679-62252006000300009 CrossRefGoogle Scholar
  15. Clarke KR, Warwick RM (1994) Change in marine communities: an approach to statistical analysis and interpretation. Plymouth Marine Laboratories, PlymouthGoogle Scholar
  16. Colwell RK (2005) EstimateS 5: Statistical estimation of species richness and shared species from samples, Version 7.5. http://viceroy.eeb.uconn.edu/EstimateS
  17. Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366Google Scholar
  18. Felley JD, Felley SM (1987) Relationships between habitat selection by individuals of a species and patterns of habitat segregation among species: fishes of the Calcasieu drainage. In: Matthews WJ, Heins DC (eds) Community and evolutionary ecology of North American stream fishes. Oklahoma Univ. Press, Norman, Oklahoma, pp 61–68Google Scholar
  19. Gehrke PC, Gilligan DM, Barwick M (2002) Changes in fish communities of the Shoalhaven River 20 years after construction of Tallowa Dam, Australia. River Res Appl 18:265–286. doi:10.1002/rra.669 CrossRefGoogle Scholar
  20. Gomiero LM, Braga FMS (2004) Feeding of introduced species of Cichla (Perciformes, Cichlidae) in Volta Grande Reservoir, River Grande (MG/SP). Braz J Biol 64:787–795. doi:10.1590/S1519-69842004000500008 PubMedCrossRefGoogle Scholar
  21. Gray SM, Mcdonnell LH, Cinquemani FG, Chapman LJ (2012) As clear as mud: turbidity induces behavioral changes in the African cichlid Pseudocrenilabrus multicolor. Curr Zool 58:146–157Google Scholar
  22. Guarino AWS, Branco CWC, Diniz GP, Rocha R (2005) Limnological characteristics of an old tropical reservoir (Ribeirão das Lajes Reservoir, RJ, Brazil). Acta Limnol Bras 17:129–141Google Scholar
  23. Hoeinghaus DJ, Agostinho AA, Gomes LC, Pelicice FM, Okada EK, Latini JD, Kashiwaqui EA, Winemiller KO (2009) Effects of river impoundment on ecosystem services of large tropical rivers: embodied energy and market value of artisanal fisheries. Conserv Biol 23:1222–1231. doi:10.1111/j.1523-1739.2009.01248.x PubMedCrossRefGoogle Scholar
  24. Holmquist JG, Schmidt-Gengenbach JM, Yoshioka BB (1998) High dams and marine-freshwater linkage: effects on native and introduced fauna in the Caribbean. Conserv Biol 12:621–630. doi:10.1111/j.1523-1739.1998.96427.x CrossRefGoogle Scholar
  25. Latini AO, Petrere M Jr (2004) Reduction of a native fish fauna by alien species: an example from Brazilian freshwater tropical lakes. Fish Manag Ecol 11:71–79. doi:10.1046/j.1365-2400.2003.00372.x CrossRefGoogle Scholar
  26. Leeuw JJ, Winter HV (2008) Migration of rheophilic fish in the large lowland rivers Meuse and Rhine, the Netherlands. Fish Manag Ecol 15:409–415. doi:10.1111/j.1365-2400.2008.00626.x CrossRefGoogle Scholar
  27. Lowe-McConnell RH (1987) Ecological studies in tropical fish communities. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  28. Maan ME, Seehausen O, Alphen JJM (2010) Female mating preferences and male coloration covary with water transparency in a Lake Victoria cichlid fish. Biol J Linn Soc 99:398–406. doi:10.1111/j.1095-8312.2009.01368.x CrossRefGoogle Scholar
  29. Marengo JA, Alves LM (2005) Hydrological trends in Paraiba do Sul River watershed. Rev Brasil Meteorol 20:215–226Google Scholar
  30. Martinez PJ, Chart TE, Trammel MA (1994) Fish species composition before and after construction of a main stem reservoir on the White River, Colorado. Environ Biol Fish 40:227–239. doi:10.1007/BF00002509 CrossRefGoogle Scholar
  31. Matthews WJ (1998) Patterns in freshwater fish ecology. Chapman and Hall, New YorkCrossRefGoogle Scholar
  32. McCartney M (2009) Living with dams: managing the environmental impacts. Water Policy 11:121–139. doi:10.2166/wp CrossRefGoogle Scholar
  33. McCune B, Mefford MJ (1999) PC-ORD. Multivariate analysis of ecological data. Version 4.0. MjM Software, Gleneden BeachGoogle Scholar
  34. Nilsson C, Berggren K (2000) Alterations of riparian ecosystems caused by river regulation. BioScience 50:783–792. doi:10.1641/0006-3568(2000)050[0783:AORECB]2.0.CO;2 CrossRefGoogle Scholar
  35. Northcote TG (1998) Migratory behavior of fish and its significance to movement through riverine fish passage facilities. In: Jungwirth MS, Schmutz, Weiss S (eds) Fish migration and fish bypasses. Fish News Books, Oxford and London, pp 3–18Google Scholar
  36. Ogbeibu AE, Oribhabor BJ (2002) Ecological impact of river impoundment using benthic macro-invertebrates as indicators. Water Res 36:2427–2436. doi:10.1016/S0043-1354(01)00489-4 PubMedCrossRefGoogle Scholar
  37. Oliveira EF, Goulart E, Minte-Vera CV (2004) Fish diversity along spatial gradients in the Itaipu Reservoir, Paraná, Brazil. Braz J Biol 64:447–458. doi:10.1590/S1519-69842004000300008 PubMedCrossRefGoogle Scholar
  38. Peeler EJ, Oidtmann BC, Midtlyng PJ, Miossec L, Gozlan RE (2011) Non-native aquatic animals introductions have driven disease emergence in Europe. Biol Invasions 13:1291–1303. doi:10.1007/s10530-010-9890-9 CrossRefGoogle Scholar
  39. Pelicice FM, Agostinho AA (2009) Fish fauna destruction after the introduction of a non-native predator (Cichla kelberi) in a Neotropical reservoir. Biol Invasions 11:1789–1801. doi:10.1007/s10530-008-9358-3 CrossRefGoogle Scholar
  40. Peretti D, Andrian IF (2004) Trophic structure of fish assemblages in five permanent lagoons of the high Paraná river floodplain, Brazil. Environ Biol Fish 71:95–103. doi:10.1023/b:ebfi.0000043155.76741.a1 CrossRefGoogle Scholar
  41. Poff NL, Allan JD, Bain MB, Karr JR, Prestegaard KL, Richter BD, Sparks RE, Stromberg JC (1997) The natural flow regime. BioScience 47:769–784CrossRefGoogle Scholar
  42. Pringle CM, Freeman MC, Freeman BJ (2000) Regional effects of hydrologic alterations on riverine macrobiota in the new world: tropical–temperate comparisons. BioScience 50:807–823CrossRefGoogle Scholar
  43. Roscoe DW, Hinch SG (2010) Effectiveness monitoring of fish passage facilities: historical trends, geographic patterns and future directions. Fish Fish 11:12–33. doi:10.1111/j.1467-2979.2009.00333.x CrossRefGoogle Scholar
  44. Santos ABI, Terra BF, Araújo FG (2010) Fish assemblage in a dammed tropical river an analysis along the longitudinal and temporal gradients from river to reservoir. Zoologia 27:732–740. doi:10.1590/S1679-62252010000300004 CrossRefGoogle Scholar
  45. Smith WS, Petrere M Jr, Barrela W (2009) The fish community of the Sorocaba River Basin in different habitats (State of São Paulo, Brazil). Braz J Biol 69:1015–1025. doi:10.1590/S1519-69842009000500005 PubMedCrossRefGoogle Scholar
  46. Soares MCS, Marinho MM, Huszar VLM, Branco CWC, Azevedo SMFO (2008) The effects of water retention time and watershed features on the limnology of two tropical reservoirs in Brazil. Lake Reserv 13:257–269. doi:10.1111/j.1440-1770.2008.00379.x CrossRefGoogle Scholar
  47. Taylor CA, Knouft JH, Hiland TM (2001) Consequences of stream impoundment on fish communities in a small North American Drainage. Regul Rivers Res Manag 17:687–698. doi:10.1002/rrr.629 CrossRefGoogle Scholar
  48. Ter Braak CJF, Šmilauer P (2002) CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). Microcomputer Power, IthacaGoogle Scholar
  49. Terra BF, Santos ABI, Araújo FG (2010) Fish assemblage in a dammed tropical river: an analysis along the longitudinal and temporal gradients from river to reservoir. Neotrop Ichthyol 8:599–606. doi:10.1590/S1679-62252010000300004 CrossRefGoogle Scholar
  50. Utne-Palm AC (2002) Visual feeding of fish in a turbid environment: physical and behavioural aspects. Mar Freshw Behav Physiol 35:111–128. doi:10.1080/10236240290025644 CrossRefGoogle Scholar
  51. Vazzoler AEAM, Lizama MAP, Inada P (1997) Influências ambientais sobre a sazonalidade reprodutiva. In: Vazzoler AEAM, Agostinho AA, Hahn NS (eds) A planície de inundação do alto rio Paraná. EDUEM, Maringá, pp 1–460Google Scholar
  52. Villares-Junior GA, Gomiero LM (2010) Feeding dynamics of Cichla kelberi Kullander & Ferreira, 2006 introduced into an artificial lake in southeastern Brazil. Neotrop Ichthyol 8:819–824. doi:10.1590/S1679-62252010005000008 CrossRefGoogle Scholar
  53. Waples RS, Zabel RW, Scheuerell MD, Sanderson BL (2008) Evolutionary responses by native species to major anthropogenic changes to their ecosystems: pacific salmon in the Columbia River hydropower system. Mol Ecol 17:84–96. doi:10.1111/j.1365-294X.2007.03510.x PubMedCrossRefGoogle Scholar
  54. Winemiller KO, Jepsen DB (1998) Effects of seasonality and fish movement on tropical river food webs. J Fish Biol 53:267–296. doi:10.1111/j.1095-8649.1998.tb01032.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • A. B. Iacone Santos
    • 1
  • R. J. Albieri
    • 1
  • F. Gerson Araújo
    • 1
  1. 1.Laboratório de Ecologia de PeixesUniversidade Federal Rural do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations