Environmental Biology of Fishes

, Volume 96, Issue 9, pp 1087–1099 | Cite as

Population genetic structures of three congeneric species of coastal pelagic fishes (Arripis: Arripidae) with extensive larval, post-settlement and adult movements

  • G. I. MooreEmail author
  • J. A. Chaplin


The population genetic structures of three congeneric coastal pelagic marine fishes (Arripis trutta, A. truttaceus and A. georgianus) were investigated to determine whether these structures were consistent with the apparently high gene flow life histories of these species. This investigation used fragment length polymorphisms at two to four nDNA intron loci (amplified by EPIC-PCR) in samples of each species collected from across their entire Australian distributions. The results revealed no evidence of genetic subdivision in any species based on an analysis of variation either across samples (with multilocus F ST values ranging from effectively zero to 0.005), or between pairs of samples. These findings, when considered in combination with other available evidence, are consistent with the view that each of these species represents a rare example of a coastal fish species that is genetically homogeneous over a vast area, including the entire geographic range (A. truttaceus and A. georgianus) or Australian distribution (A. trutta).


EPIC-PCR Leeuwin current East Australian current Migratory High gene-flow Australian salmon 



We are grateful to E. Sezmiş, N. Philips, F. Brigg and M. Hale for valuable advice on many aspects of this work. We thank S. Hoeksema, B. Chuwen, D. Wheatcroft, K. Armstrong, J. Stewart, J. Hughes and P. & M. Selim (Selim Fisheries) for assistance in sourcing specimens. This work complies with the current laws of Australia and was conducted under Murdoch University Animal Ethics Approval W1199/2006. Funding was provided by Murdoch University and the Centre for Fish and Fisheries Research, Murdoch University.


  1. Als TD, Hansen MM, Maes GE, Castonguay M, Riemann L, Aarestrup K, Munk P, Sparholt H, Hanel R, Bernatchez L (2011) All roads lead to home: panmixia of European eel in the Sargasso sea. Mol Ecol 20:1333–1346PubMedCrossRefGoogle Scholar
  2. Amos W, Harwood J (1998) Factors affecting levels of genetic diversity in natural populations. Phil Trans R Soc Lond Ser B 353:177–186CrossRefGoogle Scholar
  3. André C, Larsson LC, Laikre L, Bekkevold D, Brigham J, Carvalho GR, Dahlgren TG, Hutchinson WF, Mariani S, Mudde K, Ruzzante DE, Ryman N (2011) Detecting population structure in a high gene-flow species, Atlantic herring (Clupea harengus): direct, simultaneous evaluation of neutral vs putatively selected loci. Heredity 106:270–280PubMedCrossRefGoogle Scholar
  4. Anon (2004) Microsatellite analysis on the applied biosystems 3130 series genetic analyzers. Appl BiosystGoogle Scholar
  5. Atarhouch T, Rami M, Naciri M, Dakkak A (2007) Genetic population structure of sardine (Sardina pilchardus) off Morocco detected with intron polymorphism (EPIC-PCR). Mar Biol 150:521–528CrossRefGoogle Scholar
  6. Avise JC (2000) Phylogeography. The history and formation of species. Harvard University Press, CambridgeGoogle Scholar
  7. Ayvazian SG, Bastow TP, Edmonds JS, How J, Nowara GB (2004) Stock structure of Australian Herring (Arripis georgiana) in southwestern Australia. Fish Res 67:39–53CrossRefGoogle Scholar
  8. Barbará T, Palma-Silva C, Paggi GM, Bered F, Fay MF, Lexer C (2007) Cross-species transfer of nuclear microsatellite markers: potential and limitations. Mol Ecol 16:3759–3767PubMedCrossRefGoogle Scholar
  9. Belkhir K, Borsa P, Goudet J, Chikhi L, Bonhomme F (2004) GENETIX, logiciel sous Windows™ pour la génétiques des populations. Laboratoire Génome et Populations, Université Montpellier II, MontpellierGoogle Scholar
  10. Berrebi P, Boissin E, Fang F, Cattaneo-Berrebi G (2005) Intron polymorphism (EPIC-PCR) reveals phylogeographic structure of Zacco platypus in China: a possible target for aquaculture development. Heredity 94:589–598PubMedCrossRefGoogle Scholar
  11. Bierne N, Lehnert SA, Bédier E, Bonhomme F, Moore SS (2000) Screening for intron-length polymorphisms in penaeid shrimps using exon-primed intron-crossing (EPIC)-PCR. Mol Ecol 9:233–235PubMedCrossRefGoogle Scholar
  12. Bloch ME, Schneider JG (1801) Systema Ichthyologiae iconibus ex illustratum. Berolini: Sumtibus auctoris impressum et Bibliopolio Sanderiano commissum, pp 584Google Scholar
  13. Boissin E, Hoareau TB, Berrebi P (2011) Effects of current and historic fragmentation on the genetic structure of the sand goby Pomatoschistus minutus (Osteichthys, Gobiidae). Biol J Linn Soc 102:175–198CrossRefGoogle Scholar
  14. Cappo M, Walters CJ, Lenanton RJ (2000) Estimation of rates of migration, exploitation and survival using tag recovery data for western Australian “salmon” (Arripis truttaceus: Arripidae: Percoidei). Fish Res 44:207–217CrossRefGoogle Scholar
  15. Caputi N, Fletcher WJ, Pearce A, Chubb CF (1996) Effect of the Leeuwin Current on the recruitment of fish and invertebrates along the Western Australian coast. Mar Freshw Res 47:147–155CrossRefGoogle Scholar
  16. Cárdenas L, Silva AX, Magoulas A, Cabezas J, Poulin E, Ojeda FP (2009) Genetic population structure in the Chilean jack mackerel, Trachurus murphyi (Nichols) across the South-eastern Pacific Ocean. Fish Res 100:109–115CrossRefGoogle Scholar
  17. Chairi H, Idaomar M, Rebordinos L (2007) Mitochondrial DNA analysis of the European Anchovy in the southern Mediterranean and northern Atlantic coasts. J Fish Aq Sc 2:206–215Google Scholar
  18. Chlaida M, Laurent V, Kifani S, Benazzou T, Jaziri H, Planes S (2008) Evidence of a genetic cline for Sardina pilchardus along the Northwest African coast. ICES J Mar Sci 66:264–271CrossRefGoogle Scholar
  19. Chow S, Hazama K (1998) Universal PCR primers for S7 ribosomal protein gene introns in fish. Mol Ecol 7:1247–1263CrossRefGoogle Scholar
  20. Chow S, Takeyama H (1998) Intron length variation observed in the creatine kinase and ribosomal protein genes of the Swordfish Xiphias gladius. Fish Sc 64:397–402Google Scholar
  21. Cuvier G (1829) In Cuvier G, Valenciennes A (1828-49) Histoire naturelle des Poissons, vol 22. Levrault, ParisGoogle Scholar
  22. Daemen E, Cross T, Ollevier F, Volckaert FAM (2001) Analysis of the genetic structure of European eel (Anguilla anguilla) using microsatellite DNA and mtDNA markers. Mar Biol 139:755–764CrossRefGoogle Scholar
  23. Dannewitz J, Maes GE, Johansson L, Wickström H, Volckaert FAM, Järvi T (2005) Panmixia in the European eel: a matter of time…. Proc Roy Soc B 272:1129–1137CrossRefGoogle Scholar
  24. DeLigny W, Pantelouris EM (1973) Origin of the European eel. Nature 246:518–519CrossRefGoogle Scholar
  25. Edmonds JS, Fletcher WJ (1997) Stock discrimination of pilchards Sardinops sagax by stable isotope ratio analysis of otolith carbonate. Mar Ecol Prog Ser 152:241–247Google Scholar
  26. Edmonds JS, Steckis RA, Moran MJ, Caputi N, Morita M (1999) Stock delineation of pink snapper Pagrus auratus and tailor Pomatomus saltatrix from Western Australia by analysis of stable isotope and strontium/calcium ratios in otolith carbonate. J Fish Biol 55:243–259Google Scholar
  27. Ehrlich PR, Raven PH (1969) Differentiation of populations. Science 165:1228–1232PubMedCrossRefGoogle Scholar
  28. Fairbridge WS (1950) Some populations of the Australian “Salmon”. In Indo-Pacific Fisheries Council Proceedings, Cronulla, NSW, pp 80–85Google Scholar
  29. Fairclough DV, Dimmlich WF, Potter IC (2000a) Reproductive biology of the Australian herring Arripis georgiana. Mar Freshw Res 51:619–630CrossRefGoogle Scholar
  30. Fairclough DV, Dimmlich WF, Potter IC (2000b) Length and age compositions and growth rates of the Australian herring Arripis georgiana in different regions. Mar Freshw Res 51:631–640CrossRefGoogle Scholar
  31. Fauvelot C, Lemaire C, Planes S, Bonhomme F (2007) Inferring gene flow in coral reef fishes from different molecular markers: which loci to trust? Heredity 99:331–339PubMedCrossRefGoogle Scholar
  32. Gillanders BM, Able KW, Brown JA, Egglestone DB, Sheridan PF (2003) Evidence of connectivity between juvenile and adult habitats for mobile marine fauna: an important component of nurseries. Mar Ecol Prog Ser 247:281–295CrossRefGoogle Scholar
  33. Gold JR, Pak E, DeVries DA (2002) Population structure of king mackerel (Scomberomorus cavalla) around peninsular Florida, as revealed by microsatellite DNA. Fish Bull 100:491–509Google Scholar
  34. Gomulski LM, Bourtzis K, Brogna S, Morandi PA, Bonvicini C, Sebastiani F, Torti C, Guglielmino CR, Savakis C, Gasperi G, Malacrida AR (1998) Intron size polymorphism of the Adh 1 gene parallels the worldwide colonization history of the Mediterranean fruit fly, Ceratitis capitata. Mol Ecol 7:1729–1741CrossRefGoogle Scholar
  35. Goudet J (1995) FSTAT (Version 1.2): a computer program to calculate F-statistics. Heredity 86:485–486Google Scholar
  36. Guinand B (1996) Use of a multivariate model using allele frequency distributions to analyse patterns of genetic differentiation among populations. Biol J Linn Soc 58:173–195CrossRefGoogle Scholar
  37. Hare MP (2001) Prospects for nuclear gene phylogeography. Trends Ecol and Evol 16:700–706CrossRefGoogle Scholar
  38. Hassan M, Lemaire C, Fauvelot C, Bonhomme F (2002) Seventeen new exon-primed intron-crossing polymerase chain reaction amplifiable introns in fish. Mol Ecol Notes 2:334–340CrossRefGoogle Scholar
  39. Hauser L, Ward R (1998) Population identification in pelagic fish: the limits of molecular markers. In: Carvalho GR (ed) Advances in Molecular Ecology. Ios Press, Amsterdam, pp 191–224Google Scholar
  40. Hedgecock D (1994) Does variance in reproductive success limit effective population sizes of marine organisms? In: Beaumont AR (ed) Genetics and evolution of aquatic organisms. Chapman and Hall, London, pp 122–134Google Scholar
  41. Hoedt FE, Dimmlich WF (1994) Diet of subadult Australian Salmon, Arripis truttaceus, in Western Port, Victoria. Aust J Mar Freshw Res 45:617–623CrossRefGoogle Scholar
  42. Hoolihan JP, Anandh P, van Herwerden L (2006) Mitochondrial DNA analyses of narrow-barred Spanish mackerel (Scomberomorus commerson) suggest a single genetic stock in the ROPME sea area (Arabian Gulf, Gulf of Oman, and Arabian Sea). ICES J Mar Sci 63:1066–1074Google Scholar
  43. Hubert N, Duponchelle F, Nuñez J, Rivera R, Renno J-F (2006) Evidence of reproductive isolation among closely related species of Serrasalmus (Ostariophysii, Characidae) from the Upper Madeira River, Amazon, Bolivia. J Fish Biol 69:31–51CrossRefGoogle Scholar
  44. Hughes JM, Stewart J, Gillanders BM, Suthers IM (2011) An examination of the population structure of the eastern Australian salmon (Arripis trutta) stock in south-eastern Australia. Proceedings of the International Symposium on Advances in Fish Tagging and Marking Technology. February 2008, Auckland, New Zealand. Trans Am Fish Soc 76Google Scholar
  45. Idury RM, Cardon LR (1997) A simple method for automated allele binning in microsatellite markers. Genome Res 7:1104–1107PubMedGoogle Scholar
  46. Johnson MS, Black R (1984) Pattern beneath the chaos: the effect of recruitment on genetic patchiness in an intertidal limpet. Evolution 38:1371–1383CrossRefGoogle Scholar
  47. Johnson GD, Fritzsche RA (1989) Graus nigra, an omnivorous girellid, with a comparative osteology and comments on relationships of the Girellidae (Pisces: Perciformes). Proc Acad Nat Sc Philadelphia 141:1–27Google Scholar
  48. Knutsen H, Jorde PE, André C, Stenseth NC (2003) Fine-scaled geographical population structuring in a highly mobile marine species: the Atlantic cod. Mol Ecol 12:385–394PubMedCrossRefGoogle Scholar
  49. Lamy J-B, Bouffier L, Burlett R, Plomion C, Cochard H, Delzon S (2011) Uniform selection as a primary force reducing population genetic differentiation of cavitation resistance across a species range. PLoS One 6(8):e23476PubMedCrossRefGoogle Scholar
  50. Lenanton R (1982) Alternative non-estuarine nursery habitats for some commercially and recreationally important fish species of south-western Australia. Aust J Mar Freshw Res 33:881–900CrossRefGoogle Scholar
  51. Lenanton RCJ, Hall NG (1976) The Western Australian amateur fishery for Australian Herring (Arripis georgianus): results of the 1973 creel census. Department of Fisheries and Wildlife, Western Australia, p 59Google Scholar
  52. Li Y-C, Korol AB, Fahima T, Beiles A, Nevo E (2002) Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol 11:2453–2465PubMedCrossRefGoogle Scholar
  53. Li C, Riethoven J-JM, Lingbo M (2010) Exon-primed intron-crossing (EPIC) markers for non-model teleost fishes. BMC Evol Biol 10:90PubMedCrossRefGoogle Scholar
  54. Lintas C, Hirano J, Archer S (1998) Genetic variation of the European eel (Anguilla anguilla). Mol Mar Biol Biotech 7:263–269Google Scholar
  55. MacDonald CM (1980) Population structure, biochemical adaptation and systematics in temperate marine fishes of the genera Arripis and Chrysophrys (Pisces: Perciformes). Dissertation, Australian National University, Canberra, pp 336Google Scholar
  56. Maes GE, Volckaert FAM (2002) Clinal genetic variation and isolation by distance in the European eel Anguilla anguilla (L.). Biol J Linn Soc 77:509–521CrossRefGoogle Scholar
  57. Malcolm WB (1960) Area of distribution, and movement of the western subspecies of the Australian “Salmon”, Arripis trutta esper Whitley. Aust J Mar Freshw Res 11:282–325CrossRefGoogle Scholar
  58. Moore GI (2012) Aspects of the evolutionary history of a pair of fish species (Arripidae: Arripis) on either side of a biogeographic barrier in southern Australian seas. Dissertation. Centre for Fish and Fisheries Research, School of Biological Sciences and Biotechnology, Murdoch University, Western Australia, pp 237. Accessed 1 Nov 2012
  59. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  60. Nicholls AG (1971) A monitoring programme for Australian “Salmon” in Western Australia. CSIRO Division of Fisheries and Oceanography, Cronulla, p 40Google Scholar
  61. Page RDM, Holmes EC (1998) Molecular evolution. A Phylogenetic approach. Blackwell Science, OxfordGoogle Scholar
  62. Palm S, Dannewitz J, Prestegaard T, Wickström H (2009) Panmixia in European eel revisited: no genetic difference between maturing adults from southern and northern Europe. Heredity 103:82–89PubMedCrossRefGoogle Scholar
  63. Palumbi SR, Baker CS (1994) Contrasting population structure from nuclear intron sequences and mtDNA of Humpback Whales. Mol Biol Evol 11:426–435PubMedGoogle Scholar
  64. Paulin C (1993) Review of the Australian fish family Arripididae (Percomorpha), with the description of a new species. Aust J Mar Freshw Res 44:459–471Google Scholar
  65. Petrusevics P, Bye JAT (1995) The Leeuwin Current, wind, mean sea level and variability in Australian salmon larvae recruitment. In: Aung TH (ed) Proc Ocean Atm Pac Intl Conf. Adelaide, South Australia, pp 288–292Google Scholar
  66. Pompanon F, Bonin A, Bellemain E, Taberlet P (2005) Genotyping errors: causes, consequences and solutions. Nat Rev Genet 6:847–859PubMedCrossRefGoogle Scholar
  67. Raymond M, Rousset F (1995) GENEPOP: population genetics software for exact tests and ecumenicism. (vers. 4.0). J Heredity 86:248–249Google Scholar
  68. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225CrossRefGoogle Scholar
  69. Rohfritsch A, Borsa P (2005) Genetic structure of Indian scad mackerel Decapterus russelli: Pleistocene vicariance and secondary contact in the central Indo-West Pacific seas. Heredity 95:315–322PubMedCrossRefGoogle Scholar
  70. Rolland J-L, Bonhomme F, Lagardère F, Hassan M, Guinand B (2007) Population structure of the common sole (Solea solea) in the Northeastern Atlantic and the Mediterranean Sea: revisiting the divide with EPIC markers. Mar Biol 151:327–341CrossRefGoogle Scholar
  71. Ruzzante DE, Mariani S, Bekkevold D, Andre C, Mosegaard H, Clausen LAW, Dahlgren TG, Hutchinson WF, Hatfield EMC, Torstensen E, Brigham J, Simmonds EJ, Laikre L, Larsson LC, Stet RJM, Ryman N, Carvalho GR (2006) Biocomplexity in a highly migratory pelagic marine fish, Atlantic herring. Proc Roy Soc B 273:1459–1464CrossRefGoogle Scholar
  72. Ryman N, Palm S (2006) POWSIM: a computer program for assessing statistical power when testing for genetic differentiation. Mol Ecol 6:600–602CrossRefGoogle Scholar
  73. Selkoe KA, Toonen RJ (2006) Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol Lett 9:615–629PubMedCrossRefGoogle Scholar
  74. Shaklee JB, Currens KP (2003) Genetic stock identification and risk assessment. In: Hallerman EM (ed) Population genetics: principles and applications for fisheries scientists. American Fisheries Society, Bethesda, pp 291–328Google Scholar
  75. Siegel D, Kinlan BP, Gaylord B, Gaines SD (2003) Lagrangian descriptions of marine larval dispersion. Mar Ecol Prog Ser 260:83–96CrossRefGoogle Scholar
  76. Stanley CA (1986) Tagging experiments on Australian Salmon (Arripis trutta esper): recapture data for South Australian releases, 1952 to 1976. CSIRO Marine Laboratories, HobartGoogle Scholar
  77. Stanley CA (1988a) Tagging experiments on Australian Salmon (Arripis trutta): recapture data for New South Wales releases, 1939 to 1965, and Victorian releases, 1939 to 1964. CSIRO Marine Laboratories, Hobart, 197Google Scholar
  78. Stanley CA (1988b) Tagging experiments on Australian Salmon (Arripis trutta esper): recapture data for Western Australian releases, 1945 to 1976. CSIRO Marine Laboratories, Hobart, 196Google Scholar
  79. Stanley CA (1988c) Tagging experiments on Australian Salmon (Arripis trutta): recapture data for Tasmanian releases, 1949 to 1964. CSIRO Marine Laboratories, Hobart, 193Google Scholar
  80. Stanley CA, Malcolm WB (1977) Reproductive cycles in the eastern subspecies of the Australian Salmon, Arripis trutta marginata (Cuvier, Valenciennes). Aust J Mar Freshw Res 28:287–301CrossRefGoogle Scholar
  81. Stewart J, Hughes JM, McAllister J, Lyle JM, MacDonald CM (2011) Australian salmon (Arripis trutta): population structure, reproduction, diet and composition of commercial and recreational catches. Cronulla: Investment and Industry NSW, Cronulla, pp 259Google Scholar
  82. Theisen TC, Bowen BW, Lanier W, Baldwin JD (2008) High connectivity on a global scale in the pelagic wahoo, Acanthocybium solandri (tuna family Scombridae). Mol Ecol 17:4233–4247PubMedCrossRefGoogle Scholar
  83. Valenciennes A (1831) In Cuvier G, Valenciennes A (1828-49) Histoire naturelle des Poissons, vol 22. Levrault, ParisGoogle Scholar
  84. van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar
  85. Wang M, Zhang X, Yang T, Han Z, Yanagimoto T, Gao T (2008) Genetic diversity in the mtDNA control region and population structure in the Sardinella zunasi Bleeker. Afr J Biotech 7:4384–4392Google Scholar
  86. Waples RS (1987) A multispecies approach to the analysis of gene flow in marine shore fishes. Evolution 41:385–400CrossRefGoogle Scholar
  87. Ward RD, Woodwark M, Skibinski DOF (1994) A comparison of genetic diversity levels in marine, freshwater, and anadromous fishes. J Fish Biol 44:213–232CrossRefGoogle Scholar
  88. Ward TM, Staunton-Smith J, Hoyle S, Halliday IA (2003) Spawning patterns of four species of predominantly temperate pelagic fishes in the sub-tropical waters of southern Queensland. Est Coast Shelf Sci 56:1125–1140CrossRefGoogle Scholar
  89. White TA, Stefanni S, Stamford J, Hoelzel AR (2009) Unexpected panmixia in a long-lived, deep-sea fish with well-defined spawning habitat and relatively low fecundity. Mol Ecol 18:2563–2573PubMedCrossRefGoogle Scholar
  90. Wirth T, Bernatchez L (2001) Genetic evidence against panmixia in the European eel. Nature 409:1037–1040PubMedCrossRefGoogle Scholar
  91. Yagishita N, Miya M, Yamanoue Y, Shirai SM, Nakayama K, Suzuki N, Satoh TP, Mabuchi K, Nishida M, Nakabo T (2009) Mitogenomic evaluation of the unique facial nerve pattern as a phylogenetic marker within the perciform fishes (Teleostei: Percomorpha). Mol Phyl Evol 53:258–266CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Centre for Fish and Fisheries Research, School of Biological Sciences and BiotechnologyMurdoch UniversityMurdochAustralia
  2. 2.Fish Section, Department of Aquatic ZoologyWestern Australian MuseumWelshpoolAustralia

Personalised recommendations