Advertisement

Environmental Biology of Fishes

, Volume 96, Issue 6, pp 753–761 | Cite as

Thermohaline tolerance and embryonic development in capelin eggs (Mallotus villosus) from the Northeast Atlantic Ocean

  • Kim PræbelEmail author
  • Jørgen S. Christiansen
  • Anne Kettunen-Præbel
  • Svein-Erik Fevolden
Article

Abstract

Capelin (Mallotus villosus) displays alternative reproductive modes throughout its circumpolar distribution. This predicts divergent thermohaline tolerance of eggs because they are incubated in either a steady offshore or variable intertidal environment. We investigate herein thermohaline tolerance of eggs from the offshore spawning Barents Sea capelin. Subsequently, we compare our data with those previously published on other offshore and intertidal spawning capelin populations across the Northeast Atlantic Ocean, with the aim of determining possible patterns in the thermohaline tolerance of eggs from the alternative reproductive modes. In a 2 × 4 factorial design various combinations of salinities and temperatures had only negligible effect on the survival of eggs until first hatch. The embryonic development rate from fertilisation until first hatch across populations and between the two reproductive modes suggested non-local thermohaline tolerance towards the physical factors during development. Finally, no differences were observed in salinity tolerance from fertilisation to first hatch between populations representing different reproductive modes. The present findings demonstrate wide thermohaline tolerance of capelin eggs regardless of population origin and reproductive mode.

Keywords

Mallotus villosus Eggs Survival Salinity Temperature Beach spawning 

Notes

Acknowledgements

We thank J. W. Behrens, N. Brundtland, L. L. Hansen, O. Nordgård, T. F. Sørensen and the crew onboard the R/V Jan Mayen for assistance in the field. I.-B. Falk-Petersen, the late H. Vilhjálmsson and four anonymous reviewers are thanked for many valuable comments on an earlier draft. The study is a contribution to the BASECOEX-Programme, grant no. 140290/140, partly funded by the Norwegian Research Council.

References

  1. Ayson FG, Kaneko T, Hasegawa S, Hirano T (1994) Development of mitochondrion-rich cells in the yolk-sac membrane of embryos and larvae of tilapia, Oreochromis mossambicus, in fresh-water and seawater. J Exp Zool 270:129–135. doi: 10.1002/jez.1402700202 CrossRefGoogle Scholar
  2. Baker JA, Cresko WA, Foster SA, Heins DC (2005) Life-history differentiation of benthic and limnetic ecotypes in a polytypic population of threespine stickleback (Gasterosteus aculeatus). Evol Ecol Res 7:121–131Google Scholar
  3. Carscadden JE, Vilhjálmsson H (2002) Capelin - what are they good for? ICES J Mar Sci 59:863–869. doi: 10.1006/jmsc.2002.1283 CrossRefGoogle Scholar
  4. Carscadden JE, Frank KT, Miller DS (1989) Capelin (Mallotus villosus) spawning on the Southeast Shoal - Influence of physical factors past and present. Can J Fish Aquat Sci 46:1743–1754CrossRefGoogle Scholar
  5. Caswell H (1983) Phenotypic plasticity in life-history traits: demographic effects and evolutionary consequences. Amer Zool 23:35–46Google Scholar
  6. Christiansen JS, Præbel K, Siikavuopio SI, Carscadden JE (2008) Facultative semelparity in capelin Mallotus villosus (Osmeridae) - an experimental test of a life history phenomenon in a sub-arctic fish. J Exp Mar Biol Ecol 360:47–55. doi: 10.1016/j.jembe.2008.04.003 CrossRefGoogle Scholar
  7. Colbeck GJ, Turgeon J, Sirois P, Dodson JJ (2011) Historical introgression and the role of selective vs. neutral processes in structuring nuclear genetic variation (AFLP) in a circumpolar marine fish, the capelin (Mallotus villosus). Mol Ecol 20:1976–1987. doi: 10.1111/j.1365-294X.2011.05069.x PubMedCrossRefGoogle Scholar
  8. Davenport J (1989) The effects of salinity and low temperature on eggs of the Icelandic capelin Mallotus villosus. J Mar Biol Assoc UK 69:1–9. doi: 10.1017/S0025315400049055 CrossRefGoogle Scholar
  9. Davenport J, Stene A (1986) Freezing resistance, temperature and salinity tolerance in eggs, larvae and adults of capelin, Mallotus villosus, from Balsfjord. J Mar Biol Assoc UK 66:145–157. doi: 10.1017/S0025315400039710 CrossRefGoogle Scholar
  10. Dodson JJ, Carscadden JE, Bernatchez L, Colombani F (1991) Relationship between spawning mode and phylogeographic structure in mitochondrial-DNA of North-Atlantic capelin Mallotus villosus. Mar Ecol Prog Ser 76:103–113CrossRefGoogle Scholar
  11. Dodson JJ, Tremblay S, Colombani F, Carscadden JE, Lecomte F (2007) Trans-Arctic dispersals and the evolution of a circumpolar marine fish species complex, the capelin (Mallotus villosus). Mol Ecol 16:5030–5043. doi: 10.1111/j.1365-294X.2007.03559.x PubMedCrossRefGoogle Scholar
  12. Frank KT, Leggett WC (1981) Wind regulation of emergence times and early larval survival in capelin (Mallotus villosus). Can J Fish Aquat Sci 38:215–223CrossRefGoogle Scholar
  13. Friðgeirsson E (1976) Observations on spawning behaviour and embryonic development of the Icelandic capelin. Rit Fiskideildar 5:1–35Google Scholar
  14. Gjøsæter H (1998) The population biology and exploitation of capelin (Mallotus villosus) in the Barents Sea. Sarsia 83:453–496Google Scholar
  15. Gjøsæter H, Gjøsæter J (1986) Observations on the embryonic development of capelin (Mallotus villosus Müller) from the Barents Sea. Fiskdir Skr Ser HavUnders 18:59–68Google Scholar
  16. Holt RD (2003) On the evolutionary ecology of species’ ranges. Evol Ecol Res 5:159–178Google Scholar
  17. Hutchings JA (2011) Old wine in new bottles: reaction norms in salmonid fishes. Heredity 106:421–437. doi: 10.1038/hdy.2010.166 PubMedCrossRefGoogle Scholar
  18. Jangaard PM (1974) The capelin (Mallotus villosus). Bull Fish Res Bd Can 186:68Google Scholar
  19. Jeffers GW (1931) The life history of the capelin Mallotus villosus (O. F. Müller). Department of Biology, University of Toronto, TorontoGoogle Scholar
  20. Kamler E (2002) Ontogeny of yolk-feeding fish: an ecological perspective. Rev Fish Biol Fish 12(1):79–103. doi: 10.1023/A:1022603204337 CrossRefGoogle Scholar
  21. Kaplan EL, Meier P (1958) Nonparametric-estimation from incomplete observations. J Am Stat Assoc 53:457–481CrossRefGoogle Scholar
  22. Koskinen MT, Haugen TO, Primmer CR (2002) Contemporary fisherian life-history evolution in small salmonid populations. Nature 419:826–830. doi: 10.1038/nature01029 PubMedCrossRefGoogle Scholar
  23. Kuparinen A, Hutchings JA (2012) Consequences of fisheries-induced evolution for population productivity and recovery potential. Proc R Soc B 279:2571–2579. doi: 10.1098/rspb.2012.0120 PubMedCrossRefGoogle Scholar
  24. Mork J, Friis-Sørensen E (1983) Genetic variation in capelin Mallotus villosus from Norwegian waters. Mar Ecol Prog Ser 12:199–205CrossRefGoogle Scholar
  25. Nakashima BS, Wheeler JP (2002) Capelin (Mallotus villosus) spawning behaviour in Newfoundland waters - the interaction between beach and demersal spawning. ICES J Mar Sci 59:909–916. doi: 10.1006/jmsc.2002.1261 CrossRefGoogle Scholar
  26. Nyholmen O, Hopkins CCE (1988) Some observations on the population biology of capelin (Mallotus villosus) from Balsfjord, northern Norway. J Cons int Explor Mer 44:264–276Google Scholar
  27. Penton PM, Davoren GK, Montevecchi WA, Andrews DW (2012) Beach and demersal spawning in capelin (Mallotus villosus) on the northeast Newfoundland coast: egg developmental rates and mortality. Can J Zool 90:248–256. doi: 10.1139/z11-132 CrossRefGoogle Scholar
  28. Peterson BJ, Holmes RM, McClelland JW, Vörösmarty CJ, Lammers RB, Shiklomanov AI, Shiklomanov IA, Rahmstorf S (2002) Increasing river discharge to the Arctic Ocean. Science 298:2171–2173. doi: 10.1126/science.1077445 PubMedCrossRefGoogle Scholar
  29. Pfennig DW, Wund MA, Snell-Rood EC, Cruickshank T, Schlichting CD, Moczek AP (2010) Phenotypic plasticity’s impacts on diversification and speciation. Trends Ecol Evol 25:459–467. doi: 10.1016/j.tree.2010.05.006 PubMedCrossRefGoogle Scholar
  30. Præbel K, Christiansen JS, Fevolden S-E (2004) Spawning habitat and egg mortality in capelin, Mallotus villosus (Müller) - responses to extreme abiotic conditions. ICES CM 2004/DD:1-14Google Scholar
  31. Præbel K, Westgaard J-I, Fevolden S-E, Christiansen JS (2008) Circumpolar genetic population structure of capelin, Mallotus villosus. Mar Ecol Prog Ser 360:189–199. doi: 10.3354/meps07363 CrossRefGoogle Scholar
  32. Præbel K, Christiansen JS, Fevolden SE (2009) Temperature and salinity conditions in a sub-Arctic intertidal spawning habitat for capelin. Mar Biol Res 5:511–514. doi: 10.1080/17451000902729670 CrossRefGoogle Scholar
  33. Sætre R, Gjøsæter J (1975) Ecological investigations on the spawning grounds of the Barents Sea capelin. Fiskdir Skr Ser HavUnders 16:203–227Google Scholar
  34. Stergiou KI (1989) Capelin Mallotus villosus (Pisces, Osmeridae), glaciations, and speciation - a nomothetic approach to fisheries ecology and reproductive-biology. Mar Ecol Prog Ser 56(3):211–224CrossRefGoogle Scholar
  35. Templeman W (1948) The life history of the capelin (Mallotus villosus O. F. Müller) in Newfoundland waters. Bull Nfld Gov Lab 17:151Google Scholar
  36. Todd H, Schluter D (1999) Ecological speciation in sticklebacks: environment-dependent hybrid fitness. Evolution 53:866–873CrossRefGoogle Scholar
  37. Turrero P, Horreo JL, Garcia-Vazquez E (2012) Same old Salmo? Changes in life history and demographic trends of North Iberian salmonids since the Upper Palaeolithic as revealed by archaeological remains and beast analyses. Mol Ecol 21:2318–29. doi: 10.1111/j.1365-294X.2012.05508.x PubMedCrossRefGoogle Scholar
  38. Vila-Gispert A, Moreno-Amich R, Garcia-Berthou E (2002) Gradients of life-history variation: an intercontinental comparison of fishes. Rev Fish Biol Fish 12:417–427CrossRefGoogle Scholar
  39. Vilhjálmsson H (1994) The Icelandic capelin stock. Capelin, Mallotus villosus (Müller) in the Iceland-Greenland-Jan Mayen area. Rit Fiskideildar 13:1–281Google Scholar
  40. Vilhjálmsson H (2002) Capelin (Mallotus villosus) in the Iceland-East Greenland-Jan Mayen ecosystem. ICES J Mar Sci 59:870–883. doi: 10.1006/jmsc.2002.1233 CrossRefGoogle Scholar
  41. Vonlanthen P, Bittner D, Hudson AG, Young KA, Müller R, Lundsgaard-Hansen B, Roy D, Di Piazza S, Largiader CR, Seehausen O (2012) Eutrophication causes speciation reversal in whitefish adaptive radiations. Nature 482:357–363. doi: 10.1038/nature10824 PubMedCrossRefGoogle Scholar
  42. Whitman DW, Agrawal AA (2009) What is phenotypic plasticity and why is it important? In: Whitman DW, Ananthakrishnan TN (eds) Phenotypic plasticity of insects. Enfield, Science Publishers, pp 1–63CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Kim Præbel
    • 1
    Email author
  • Jørgen S. Christiansen
    • 1
  • Anne Kettunen-Præbel
    • 2
  • Svein-Erik Fevolden
    • 1
  1. 1.Department of Arctic and Marine BiologyUniversity of TromsøTromsøNorway
  2. 2.Nofima MarinTromsøNorway

Personalised recommendations