Environmental Biology of Fishes

, Volume 93, Issue 4, pp 491–503 | Cite as

Aspects of the reproductive biology of two archer fishes Toxotes chatareus, (Hamilton 1822) and Toxotes jaculatrix (Pallas 1767)

  • K. D. Simon
  • Y. Bakar
  • A. G. MazlanEmail author
  • C. C. Zaidi
  • A. Samat
  • A. Arshad
  • S. E. Temple
  • N. J. Brown-Peterson


Various aspects of the reproductive biology of two archer fishes Toxotes chatareus and Toxotes jaculatrix were studied to describe gonad development, spawning season, sex ratio, and fecundity. Spawning season was assessed using monthly changes in gonadosomatic index (GSI) and histological inspection of the gonads. Both species exhibit two modes of oocytes; a mode of small primary growth oocytes and a single mode that increases with size as oocytes sequester vitellogenin and undergo maturation, showing the synchronous oocyte development typical of total spawners. Based on GSI values and advanced stages of oocyte maturity, T. chatareus and T. jaculatrix, females appear to spawn from November to December. The average fecundity of female T. chatareus was 55 000 ± 5538 eggs, and T. jaculatrix was 50 000 ± 3440 eggs; fecundity ranged from 20 000 to 150 000 eggs for both species, with relative fecundities of 600 to 1100 eggs/g body weight, and a mean value of 800 ± 32 for T. chatareus; relative fecundity ranged from 500 to 1100 with a mean value of 700 ± 23 for T. jaculatrix. Sex ratio, defined as the proportion of males to females, was 2.2 and 2.5 in T. chatareus and T. jaculatrix, respectively. The apparent abundance of males in samples could be due to females being positioned lower in the water column and therefore being sampled less frequently. Our results indicate that in both species, spawning occurs between the months of November and December during the monsoon season, which provides the mangrove coastal waters inhabited by these species with an abundance of food resources and additional floodplain nursery habitat for larvae and juveniles.


Archerfish Gonadal development Histology Fecundity Mangrove 



This study was funded by the Ministry of Science, Technology and Innovation, Malaysia (MOSTI) through UKM Science Fund grant # 04-01-02-SF0124, and Post Doctoral Fellowship scheme “HCD (STI) MOSTI” to the first author. SET was supported by Post Doctoral fellowships from The University of Queensland and the Natural Sciences and Engineering Research Council of Canada. A note of appreciation to Siti Zahrah Abdullah, Oo Mooi Gaik, Norazian and Choong, National fish health research centre, Penang, Malaysia for their considerable cooperation and assistance during the histology works. Thanks to all the dedicated laboratory technicians for their help in collecting fish used in this study. We would also like to thank David L.G. Noakes (Editor-in-Chief, Env. Biol. Fish), Lynn Bouvier (Managing Editor Env. Biol. Fish) and the reviewers for their very useful comments. We appreciate Professor Gires Usup, and Cheng Kok Wah for their help in taking photos of the slides.


  1. Allen GR (1978) A review of the archerfishes (family Toxotidae). Rec West Aust Mus 6(4):355–378Google Scholar
  2. Allen GR (1991) Field guide to the freshwater fishes of New Guinea. Christensen Research Institute, Madang, Papua New Guinea. doi:
  3. Allen GR (2001) Toxotidae-archer fishes. In: Carpenter KE, Niem VH (eds) FAO species identification guide for fishery purposes. The living marine resources of the West Central Pacific. Vol 5, bony fishes part 3 (Menidae to Pomacentridae). FAO, Rome, pp 3212–3215Google Scholar
  4. Allen GR (2004) Toxotes kimberleyensis, a New species of Archerfish (Pisces: Toxotidae) from Fresh Waters of Western Australia. Rec Aust Mus 56:225–230CrossRefGoogle Scholar
  5. Allen GR, Midgley SH, Allen M (2002) Field guide to the freshwater fishes of Australia. Western Australian Museum, Perth. doi:
  6. Arocha F, Bárrios A (2009) Sex ratios, spawning seasonality, sexual maturity, and fecundity of white marlin (Tetrapturus albidus) from the western central Atlantic. Fish Res 95:98–111. doi: 10.1016/j.fishres.2008.08.010 CrossRefGoogle Scholar
  7. Barbin GP, McCleave JD (1997) Fecundity of the American eel Anguilla rostrata at 45º N in Maine, USA. J Fish Biol 51:840–847. doi: 10.1111/j.1095-8649.1997.tb02004.x Google Scholar
  8. Brown-Peterson NJ, Wyanski DM, Saborido-Rey F, Macewicz BJ, Lowerre-Barbieri SK (2011) A standardized terminology for describing reproductive development in fishes. Mar Coast Fish 3:52–70. doi: 10.1080/19425120.2011.555724 Google Scholar
  9. Calvo J, Morriconi E, Rae GA (1999) Reproductive biology of the icefish Champsocephalus esox (Gunther, 1861) (Channichthyidae). Antart Sci 11:140–149Google Scholar
  10. Cau A, Manconi P (1983) Sex-ratio and spatial displacement in Conger conger (L.). Rapp Comm int MerMedit 28:93–96Google Scholar
  11. Clavier J (1992) Fecundity and optimal sperm density for fertilization in the ormer (Haliotis tuberculata L). In: Shepherd SA, Tegner MJ, del Próo SA Guzmán (eds) Abalone of the world: Biology, fisheries and culture. Fishing News Books, Oxford, pp 86–92Google Scholar
  12. Gartner JV (1993) Patterns of reproduction in the dominant lanternfish species (Pisces: Myctophidae) of the eastern Gulf of Mexico, with a review of reproduction among tropical-subtropical Myctophidae. Bull Mar Sci 52(2):721–750Google Scholar
  13. Gill Th (1909) The archerfish and its feats. Smithsonian Misc Collect 52:277–286Google Scholar
  14. Hesp AS, Potter I, Hall N (2004) Reproductive biology and protandrous hermaphroditism in Acanthopagrus latus. Environ Biol Fish 70:257–272. doi: 10.1023/B:EBFI.0000033344.21383.00 CrossRefGoogle Scholar
  15. Hay DE (1985) Reproductive biology of Pacific herring (Clupea harengus pallasi). Can J Fish Aquat Sci 42:111–126CrossRefGoogle Scholar
  16. Hunter JR, Macewicz BJ, Chyan-huei LON, Kimbrell CA (1992) Fecundity, spawning, and maturity of female Dover sole Microstomus pacificus, with an evaluation of assumptions and precision. Fish Bull US 90:101–128Google Scholar
  17. Kartas F, Quignard JP (1984) La Fécondité des Poissons Téleostéens. Collection de Biologie des Milieux Marins, Masson, Paris, pp 19–21 (in French)Google Scholar
  18. Lowe-McConnell RH (1987) Ecological studies in tropical fish communities. Cambridge University Press, Cambridge, p 382CrossRefGoogle Scholar
  19. Manickchand-Heileman SC, Phillip DAT (1999) Contribution to the biology of the vermilion snapper, Rhomboplites aurorubens, in Trinidad and Tobago, West Indies. Environ Biol Fish 55:413–421. doi: 10.1023/A:1007513432102 CrossRefGoogle Scholar
  20. Mazlan AG, Rohaya M (2008) Size, growth and reproductive biology of the giant mudskipper, Periophthalmodon schlosseri (Pallas, 1770) in Malaysian waters. J Appl Ichthyol 24:290–296. doi: 10.1111/j.1439-0426.2007.01033.x CrossRefGoogle Scholar
  21. McDonough CJ, Roumilllat WA, Wenner CA (2005) Sexual differentiatin and gonad development in striped mullet (Mugil cephalus L) from South Carolina estuaries. Fish Bull 103:610–619Google Scholar
  22. Montchowui E, Lalèyè P, Poncin P, Philippart J-C (2010) Reproductive strategy of Labeo senegalensis Valenciennes 1842 (Teleostei: Cyprinidae) in the Ouémé basin, Benin. African J Aquat Sci 35:81–85. doi: 10.2989/16085914.2010.466586 CrossRefGoogle Scholar
  23. Murua H, Saborido-Rey F (2003) Female reproductive strategies of marine fish species of the north Atlantic. J Northw Atl Fish Sci 33:23–31CrossRefGoogle Scholar
  24. Nelson RS (1988) A study of the life history, ecology and population dynamics of four sympatric reef predators (Rhomboplites aurorubens, Lutjanus campechanus, Lutjanidae, Haemulon melanurum, Haemulidae, and Pagrus pagrus, Sparidae) on the East and West Flower Garden Banks, Northwestern Gulf of Mexico, Dissertation, North Carolina State UniversityGoogle Scholar
  25. Palazón-Fernández JL, Arias AM, Sarasquete C (2001) Aspects of the reproductive biology of the toadfish, Halobatrachus didactylus (Schneider, 1801) (Pisces: Batrachoididae). Sci Mar 65(2):131–138CrossRefGoogle Scholar
  26. Pethiyagoda R (1991) Freshwater fishes of Sri Lanka. The Wildlife Heritage Trust of Sri Lanka, Colombo, pp 362. doi:
  27. Romagosa E (2010) Reproductive status in females of the Brazilian catfish, Pseudoplatystoma fasciatum reared in cages. J Appl Ich 26:806–811. doi: 10.1111/j.1439-0426.2010.01532.x CrossRefGoogle Scholar
  28. Simon KD, Mazlan AG (2008) Trophodynamic analysis of archer fishes (Toxotes chatareus and Toxotes jaculatrix). In Proceedings of the IOC/WESTPAC 7th international scientific symposium 21–25 May 2008, The Magellan Sutera, Sutera Harbour Resort, Kota Kinabalu, Sabah, Malaysia, pp 219Google Scholar
  29. Simon KD, Mazlan AG (2010) Trophic position of archerfish species (Toxotes chatareus and Toxotes jaculatrix) in the Malaysian estuaries. J Appl Ichthyol 26(1):84–88. doi: 10.1111/j.1439-0426.2009.01351.x CrossRefGoogle Scholar
  30. Simon KD, Bakar Y, Samat A, Zaidi CC, Aziz A, Mazlan AG (2009) Population growth, trophic level, and reproductive biology of two congeneric archer fishes (Toxotes chatareus, Hamilton 1822 and Toxotes jaculatrix, Pallas 1767) inhabiting Malaysian coastal waters. J Zhejiang Univ Sci B 10(12):902–911. doi: 10.1631/jzus.B0920173 PubMedCrossRefGoogle Scholar
  31. Simon KD, Mazlan AG, Samat A, Zaidi CC, Aziz A (2010a) Size, growth and age of two congeneric archer fishes (Toxotes jaculatrix Pallas, 1767 and Toxotes chatareus Hamilton, 1822) inhabiting Malaysian coastal waters. Sains Malaysiana 39(5):697–704Google Scholar
  32. Simon KD, Bakar Y, Temple SE, Mazlan AG (2010b) Morphometric and meristic variation in two congeneric archer fish species (Toxotes chatareus, Hamilton 1822 and Toxotes jaculatrix, Pallas 1767) inhabiting Malaysian coastal waters. J Zhejiang Univ Sci B 11(11):871–879. doi: 10.1631/jzus.B1000054 PubMedCrossRefGoogle Scholar
  33. Simon KD, Bakar Y, Temple SE, Mazlan AG (2011) Spitting success and accuracy in archer fishes Toxotes chatareus (Hamilton, 1822) and Toxotes jaculatrix (Pallas 1767). Sci Res Essays 6(7):1627–1633Google Scholar
  34. Solomon FN, Ramnarine IW (2007) Reproductive biology of white mullet, Mugil curema (Valenciennes) in the Southern Caribbean. Fish Res 88:133–138. doi: 10.1016/j.fishres.2007.06.024 CrossRefGoogle Scholar
  35. Temple SE (2007) Effect of salinity on the refractive index of water: considerations for archer fish aerial vision. J Fish Biol 70:1626–1629. doi: 10.1111/j.1095-8649.2007.01432.x CrossRefGoogle Scholar
  36. Temple SE, Hart NS, Marshall NJ, Collin SP (2010) A spitting image: specializations in archerfish eyes for vision at the interface between air and water. Proc R Soc B 277:2607–2615. doi: 10.1098/rspb.2010.0345 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • K. D. Simon
    • 1
    • 2
  • Y. Bakar
    • 1
  • A. G. Mazlan
    • 2
    Email author
  • C. C. Zaidi
    • 2
  • A. Samat
    • 2
  • A. Arshad
    • 3
  • S. E. Temple
    • 4
  • N. J. Brown-Peterson
    • 5
  1. 1.School of Environmental and Natural Resource Sciences, Faculty of Science and TechnologyUniversiti Kebangsaan MalaysiaBangiMalaysia
  2. 2.Marine Ecosystem Research Centre, Faculty of Science and TechnologyUniversiti Kebangsaan MalaysiaBangiMalaysia
  3. 3.Department of Aquaculture, Faculty of Agriculture IIUniversiti Putra MalaysiaSerdangMalaysia
  4. 4.School of Biomedical SciencesUniversity of QueenslandBrisbaneAustralia
  5. 5.Department of Coastal SciencesThe University of Southern MississippiOcean SpringsUSA

Personalised recommendations