Environmental Biology of Fishes

, Volume 93, Issue 2, pp 193–207 | Cite as

Otolith Sr:Ca and Ba:Ca may give inconsistent indications of estuarine habitat use for American eels (Anguilla rostrata)

  • Brian M. Jessop
  • Chia-Hui Wang
  • Wann-Nian Tzeng
  • Chen-Feng You
  • Jen-Chieh Shiao
  • Shih-Huan Lin


Temporal patterns in otolith Sr:Ca and Ba:Ca ratio values of American eels Anguilla rostrata from two sites in western Newfoundland gave insight into the use of freshwater and saline habitats. Mean Sr:Ca and Ba:Ca values at the core zone did not differ between sites, indicative of a common oceanic origin. At the otolith edge, representing continental life, both Sr:Ca and Ba:Ca values varied between sites consistent with ambient element:Ca ratio values and salinity, with typically higher Sr:Ca and lower Ba:Ca values in saline than in fresh waters. Most eels (73%) from Muddy Hole, an estuarine site, were evaluated as estuarine residents while most (70%) eels from Castors River, a freshwater site, were evaluated as freshwater residents, with the remaining eels from each site evaluated as inter-habitat migrants. An otolith element:Ca critical value appropriate for distinguishing between fresh and saline water residence is fundamental for estimating the proportion of eel residence in freshwater and their subsequent classification into habitat residence groups. Such classification is moderately robust to the critical value selected. For inter-habitat migrants, moderate otolith Sr:Ca values between the elver check and otolith edge suggestive of estuarine residence may coincide with Ba:Ca values suggestive of freshwater residence. No general critical value for separating fresh and estuarine habitats was found for otolith Ba:Ca. Otolith Ba:Ca temporal patterns may assist the use of Sr:Ca in the evaluation of historical habitat residence and inter-habitat movement but the use of otolith Ba:Ca values should be applied cautiously for American eels and perhaps of other estuarine/freshwater migratory fishes.


American eel Habitat use Otolith strontium and barium 


  1. Angino EE, Billings GK, Andersen N (1966) Observed variations in the strontium concentration of sea water. Chem Geol 1:145–153CrossRefGoogle Scholar
  2. Arai T, Hirata T (2006) Differences in the trace element deposition in otoliths between marine- and freshwater-resident Japanese eels, Anguilla japonica, as determined by laser ablation ICPMS. Env Biol Fish 75:173–182CrossRefGoogle Scholar
  3. Arai T, Otake T, Tsukamoto K (1997) Drastic changes in otolith microstructure and microchemistry accompanying the onset of metamorphosis in the Japanese eel Anguilla japonica. Mar Ecol Prog Ser 161:17–22CrossRefGoogle Scholar
  4. Arnqvist G, Wooster D (1995) Meta-analysis: synthesizing research findings in ecology and evolution. Tree 10:236–240PubMedGoogle Scholar
  5. Bath GE, Thorrold SR, Jones CM, Campana SE, McLaren JW, Lam JWH (2000) Strontium and barium uptake in aragonitic otoliths of marine fish. Geochim Cosmochim Acta 64(10):1705–1714CrossRefGoogle Scholar
  6. Bradbury IR, Campana SE, Bentzen P (2008) Otolith elemental composition and adult tagging reveal spawning site fidelity and estuarine dependency in rainbow smelt. Mar Ecol Prog Ser 368:255–268CrossRefGoogle Scholar
  7. Bulger AJ, Haden BP, Monaco ME, Nelson DM, McCormick-Day MG (1993) Biologically-based estuarine salinity zones derived from a multivariate analysis. Estuaries 16(2):311–322CrossRefGoogle Scholar
  8. Campana SE (1999) Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Mar Ecol Prog Ser 188:263–297CrossRefGoogle Scholar
  9. Coffey M, Dehairs F, Collette O, Luther G, Church T, Jickells T (1997) The behaviour of dissolved barium in estuaries. Estuar Coast Shelf Sci 45:113–121CrossRefGoogle Scholar
  10. Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Erlbaum, HillsdaleGoogle Scholar
  11. COSEWIC (Committee on Status of Endangered Wildlife in Canada) (2006) Status Report – American Eel. COSEWIC. Available: www.sararegistry.gc.ca/species/speciesDetails_e.cfm?sid=891. (June 2008)
  12. Crook DA, Macdonald JI, O’Connor JP, Barry B (2006) Use of otolith chemistry to examine patterns of diadromy in the threatened Australian grayling Prototroctes maraena. J Fish Biol 69:1330–1344CrossRefGoogle Scholar
  13. Crook DA, Macdonald JI, Raadik TA (2008) Evidence of diadromous movements in a coastal population of southern smelts (Retropinninae: Retropina) from Victoria, Australia. Mar Freshw Res 59:638–646CrossRefGoogle Scholar
  14. Daverat F, Tomás J (2006) Tactics and demographic attributes in the European eel Anguilla anguilla in the Gironde watershed, SW France. Mar Ecol Prog Ser 307:247–257CrossRefGoogle Scholar
  15. Daverat F, Tomas J, Lahaye M, Palmer M, Elie P (2005) Tracking continental habitat shifts of eels using otolith Sr/Ca ratios: validation and application to the coastal, estuarine and riverine eels of the Gironde-Garonne-Dordogne watershed. Mar Freshw Res 56:619–627CrossRefGoogle Scholar
  16. Daverat F, Limburg KE, Thibault I, Shiao J-C, Dodson JJ, Caron F, Tzeng W-N, Iizuka Y, Wickström H (2006) Phenotypic plasticity of habitat use by three temperate eel species, Anguilla anguilla, A. japonica and A. rostrata. Mar Ecol Prog Ser 308:231–241CrossRefGoogle Scholar
  17. Dorval E, Jones CM, Hannigan R, van Montfrans J (2007) Relating otolith chemistry to surface water chemistry in a coastal plain estuary. Can J Fish Aquat Sci 64:411–424CrossRefGoogle Scholar
  18. Elsdon TS, Gillanders BM (2002) Interactive effects of temperature and salinity on otolith chemistry: challenges for determining environmental histories of fish. Can J Fish Aquat Sci 59:1796–1808CrossRefGoogle Scholar
  19. Elsdon TS, Gillanders BM (2004) Fish otolith chemistry influenced by exposure to multiple environmental variables. J Exp Mar Biol Ecol 313:269–284CrossRefGoogle Scholar
  20. Elsdon TS, Gillanders BM (2005a) Consistency of patterns between laboratory experiments and field collected fish in otolith chemistry: an example and applications for salinity reconstructions. Mar Freshw Res 56:609–617CrossRefGoogle Scholar
  21. Elsdon TS, Gillanders BM (2005b) Alternative life-history patterns of estuarine fish: barium in otoliths elucidates freshwater residency. Can J Fish Aquat Sci 62:1143–1152CrossRefGoogle Scholar
  22. Elsdon TS, Wells BK, Campana SE, Gillanders BM, Jones CM, Limburg KE, Secor DH, Thorrold SR, Walther BD (2008) Otolith chemistry to describe movements and life-history parameters of fishes: hypotheses, assumptions, limitations and inferences. Ocean Mar Biol: An Ann Rev 46:297–330CrossRefGoogle Scholar
  23. Guay CK, Falkner KK (1998) Barium as a tracer of Arctic halocline and river waters. Deep-sea Res II 44(8):1543–1569CrossRefGoogle Scholar
  24. Haro A, Richkus W, Whalen K, Hoar A, Busch W-D, Lary S, Brush T, Dixon D (2000) Population decline of the American eel. Fisheries 25(9):7–16CrossRefGoogle Scholar
  25. Hamer PA, Jenkins GP (2007) Comparison of spatial variation in otolith chemistry of two fish species and relationships with water chemistry and otolith growth. J Fish Biol 71:1035–1055CrossRefGoogle Scholar
  26. Jessop BM (1997) An overview of European and American eel stocks, fisheries, and management issues. In Peterson, R. H. (ed.) The American eel in Eastern Canada: stock status and management strategies. Proceedings of Eel Management Workshop, January 13–14, 1997, Quebec City, Q.C. Can Tech Rep Fish Aquat Sci No 1296:6–20Google Scholar
  27. Jessop BM, Shiao JC, Iizuka Y, Tzeng WN (2002) Migratory behaviour and habitat use by American eels Anguilla rostrata as revealed by otolith microchemistry. Mar Ecol Prog Ser 233:217–229CrossRefGoogle Scholar
  28. Jessop BM, Shiao JC, Iizuka Y, Tzeng WN (2007) Effects of inter-habitat migration on the evaluation of growth rate and habitat residence of American eels Anguilla rostrata. Mar Ecol Prog Ser 342:255–263CrossRefGoogle Scholar
  29. Jessop BM, Cairns DK, Thibault I, Tzeng WN (2008) Life history of American eel Anguilla rostrata: new insights from otolith microchemistry. Aquat Biol 1:205–216CrossRefGoogle Scholar
  30. Jessop BM, Shiao JC, Iizuka Y (2009) Life history of American eels from western Newfoundland. Trans Am Fish Soc 138:861–871CrossRefGoogle Scholar
  31. Kalish JM (1989) Otolith microchemistry: Validation of the effects of physiology, age, and environment on otolith composition. J Exp Mar Biol Ecol 132:151–178CrossRefGoogle Scholar
  32. Kawakami Y, Mochioka N, Morishita K, Tajima T, Nakagawa H, Toh H, Nakazono A (1998) Factors influencing otolith strontium/calcium ratios in Anguilla japonica elvers. Envir Biol Fish 52:299–303CrossRefGoogle Scholar
  33. Kotake A, Okamura A, Yamada Y, Utoh T, Arai T, Miller MJ, Oka HP, Tsukamoto K (2005) Seasonal variation in the migratory history of the Japanese eel Anguilla japonica in Mikawa Bay, Japan. Mar Ecol Prog Ser 293:213–221CrossRefGoogle Scholar
  34. Kraus RT, Secor DH (2004) Incorporation of strontium into otoliths of an estuarine fish. J Exp Mar Biol Ecol 302:85–106CrossRefGoogle Scholar
  35. Macdonald JI, Crook DA (2010) Variability in Sr:Ca and Ba:Ca ratios in water and fish otoliths across an estuarine salinity gradient. Mar Ecol Prog Ser 413:147–161CrossRefGoogle Scholar
  36. Martin GB, Wuenschel MJ (2006) Effect of temperature and salinity on otolith element incorporation in juvenile gray snapper Lutjanus griseus. Mar Ecol Prog Ser 324:229–239CrossRefGoogle Scholar
  37. Miller JA (2009) The effects of temperature and water concentration on the otolith incorporation of barium and manganese in black rockfish Sebastes melanops. J Fish Biol 75:39–60PubMedCrossRefGoogle Scholar
  38. Miller JA, Gray A, Merz J (2010) Quantifying the contribution of juvenile migratory phenotypes in a population of Chinook salmon Oncorhynchus tshawytscha. Mar Ecol Prog Ser 408:227–240CrossRefGoogle Scholar
  39. Nakagawa S, Cuthill IC (2007) Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol Rev 82:591–605PubMedCrossRefGoogle Scholar
  40. Neff JM (2002) Bioaccumulation in marine organisms: effects of contaminants from oil well produced water. Elsevier, OxfordGoogle Scholar
  41. Olkin I, Pratt JW (1958) Unbiased estimation of certain correlation coefficients. Ann Math Stat 29:201–211CrossRefGoogle Scholar
  42. Otake T, Ishii T, Nakahara M, Nakamura R (1994) Drastic changes in otolith strontium/calcium ratios in leptocephali and glass eels of Japanese eel Anguilla japonica. Mar Ecol Prog Ser 112:189–193CrossRefGoogle Scholar
  43. Porter TR, Riche LG,Traverse GR (1974) Catalogue of rivers in insular Newfoundland. Resource Development Branch, Newfoundland Region. Data Rep Ser No. New/D-74-9 vol. CGoogle Scholar
  44. R Development Core Team (2010) R: A language and environment for statistical computing, reference index version 2.12.1. R Foundation for statistical computing, Vienna, Austria. URL http://www.R-project.org
  45. Secor DH, Rooker JR (2000) Is otolith strontium a useful scalar for life-cycles in estuarine fishes? Fish Res 46:359–371CrossRefGoogle Scholar
  46. Shiao JC, Ložys L, Iizuka Y, Tzeng WN (2006) Migratory patterns and contribution of stocking to the population of European eels in Lithuanian waters as indicated by otolith Sr:Ca ratios. J Fish Biol 69:749–769CrossRefGoogle Scholar
  47. Tabouret H, Bareille G, Claverie F, Pécheyran C, Prouzet P, Donard OFX (2010) Simultaneous use of strontium:calcium and barium:calcium ratios in otoliths as markers of habitat: Application to the European eel (Anguilla anguilla) in the Adour basin, South West France. Mar Envir Res 70:35–45CrossRefGoogle Scholar
  48. Thibault I, Dodson JJ, Caron F, Tzeng W-N, Iizuka Y, Shiao J-C (2007) Facultative catadromy in American eels: testing the conditional strategy hypothesis Mar Ecol Prog Ser 344:219–229Google Scholar
  49. Tsukamoto K, Arai T (2001) Facultative catadromy of the eel Anguilla japonica between fresh water and seawater habitats. Mar Ecol Prog Ser 220:265–276CrossRefGoogle Scholar
  50. Tzeng W-N (1996) Effects of salinity and ontogenetic movements on strontium:calcium ratios in the otoliths of the Japanese eel, Anguilla japonica Temminck and Schlegel. J Exp Mar Biol Ecol 199:111–122CrossRefGoogle Scholar
  51. Tzeng WN, Tsai YC (1994) Changes in otolith microchemistry of the Japanese eel, Anguilla japonica, during its migration from the ocean to the rivers of Taiwan. J Fish Biol 45:671–683Google Scholar
  52. Tzeng WN, Wu HF, Wickström H (1994) Scanning electron microscope analysis of annulus microstructure in otolith of European eel, Anguilla anguilla. J Fish Biol 45:479–492CrossRefGoogle Scholar
  53. Tzeng W-N, Severin KP, Wickström H (1997) Use of otolith microchemistry to investigate the environmental history of European eel Anguilla anguilla. Mar Ecol Prog Ser 149:73–81CrossRefGoogle Scholar
  54. Tzeng WN, Shiao JC, Iizuka Y (2002) Use of otolith Sr:Ca ratios to study the riverine migratory behaviors of the Japanese eel Anguilla japonica. Mar Ecol Prog Ser 245:213–221CrossRefGoogle Scholar
  55. USFWS (United States Fish & Wildlife Service) (2005) Progress Report: The American Eel Status Review. USFWS. Available: www.fws.gov/northeast/ameel/statusreprog.html. (June 2008)
  56. USFWS (United States Fish & Wildlife Service) (2007) Endangered and threatened wildlife and plants; 12-month finding on a petition to list the American eel as threatened or endangered. Federal Register 72:22(2 February 2007):4967–4997Google Scholar
  57. Walther BD, Thorrold SR (2006) Water, not food, contributes the majority of strontium and barium deposited in the otoliths of a marine fish. Mar Ecol Prog Ser 311:125–130CrossRefGoogle Scholar
  58. Zar JH (1984) Biostatistical analysis, 2nd edn. Prentice-Hall, Englewood CliffsGoogle Scholar
  59. Zimmerman CE (2005) Relationship of otolith strontium-to-calcium ratios and salinity: experimental validation for juvenile salmonids. Can J Fish Aquat Sci 62:88–97CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Brian M. Jessop
    • 1
  • Chia-Hui Wang
    • 2
    • 3
  • Wann-Nian Tzeng
    • 3
    • 4
  • Chen-Feng You
    • 2
  • Jen-Chieh Shiao
    • 5
  • Shih-Huan Lin
    • 4
  1. 1.Department of Fisheries and OceansBedford Institute of OceanographyDartmouthCanada
  2. 2.Earth Dynamic System Research CenterNational Cheng Kung UniversityTainanTaiwan
  3. 3.Department of Environmental Biology and Fisheries ScienceNational Taiwan Ocean UniversityKeelungTaiwan
  4. 4.Institute of Fisheries ScienceNational Taiwan UniversityTaipeiTaiwan
  5. 5.Institute of OceanographyNational Taiwan UniversityTaipeiTaiwan

Personalised recommendations