Environmental Biology of Fishes

, Volume 92, Issue 3, pp 413–423 | Cite as

Length and weight estimates from diagnostic hard part structures of fish, crustacea and cephalopods forage species in the western Indian Ocean

  • Michel Potier
  • Frédéric Ménard
  • Herman Doris Benivary
  • Richard Sabatié


To estimate the original prey size of well-digested prey (fish, cephalopod and crustacean) of large pelagic fish predators representing 17 species in eight families (Scombridae, Xiphiidae, Istiophoridae, Carangidae, Coryphaenidae, Alepisauridae, Sphyraenidae and Carcharhinidae), we presented regression equations relating the length and weight of the prey to lengths of diagnostic hard part structures recovered from stomach contents. Stomach samples were collected in the western Indian Ocean between 2000 and 2008 from predators caught by three fishing gears: longline, purse seine and troll lines. In addition, fresh specimens were collected from trawls nets carried out during scientific cruises at depths ranging from the surface to 500 m. Parameters of the least-square regression equations were estimated between different diagnostic hard parts and the length and the weight of the prey. These relationships are useful for estimating the reconstructed weight of the diet of top predators and for estimating the predator size-prey size ratios. This work is the first reference on such relationships for the forage fauna of the western Indian Ocean.


Hard part structures Prey Weight-length relationships Length-length relationships Diet Reconstructed weight 



We wish to thank the Seychelles Fishing Authority (SFA), owner of the longliner “Amitié”, the Paul Emile Victor Institute (IPEV) owner of the R/V La Curieuse, the ASCLME project which allowed us to embark on board the R/V F. Nansen, and the crew of all the vessels and purse seiners for helping us to undertake this research program by hosting us for the trips on board. This work was supported by the BIOPS project funded by la Fondation pour la Recherche sur la Biodiversité (No. CD-AOOI-07-013). We thank anonymous referees for their valuable comments and suggestions that helped us to improve the manuscript.


  1. Ahyong ST (2001) Revision of the Australian stomatopod crustacean. Records of the Australian Museum, 26Google Scholar
  2. Bertrand A, Bard F-X, Josse E (2002) Tuna food habits related to the micronekton distribution in French Polynesia. Mar Biol 140:1023–1037CrossRefGoogle Scholar
  3. Bowen WD (2000) Reconstruction of pinniped diets: accounting for complete digestion of otoliths and cephalopods beaks. Can J Fish Aquat Sci 57:898–905CrossRefGoogle Scholar
  4. Carlander KD (1969) Handbook of freshwater fishery biology. The Iowa State University, AmesGoogle Scholar
  5. Cherel Y, Ridoux V, Rodhouse PG (1996) Fish and squid in the diet of king penguin chicks, Aptenodytes patagonicus, during winter at sub-antarctic Crozet Islands. Mar Biol 126:559–570CrossRefGoogle Scholar
  6. Chipps SR, Garvey JE (2007) Quantitative assessment of food habits and feeding patterns. In: Guy C, Brown M (eds) Analysis and interpretation of freshwater fisheries data. Am Fish Soc 473-514Google Scholar
  7. Clarke MR (1986) A handbook for the identification of cephalopod beaks. Clarendon, OxfordGoogle Scholar
  8. Crosnier A, Forest J (1973) Les crevettes profondes de l’Atlantique oriental tropical. Faune tropicale XIX. ORSTOM, ParisGoogle Scholar
  9. Crosnier A, Thomassin B (1974) Sur des crabes de la famille des Portunidae (Crustacea, Decapoda) nouveaux pour Madagascar ou rares. Bull MNHN 241:1097–1118Google Scholar
  10. Froese R (2006) Cube law, condition factor and weight-length relationships: history, meta-analysis and recommendations. J Appl Ichthyol 23:241–253CrossRefGoogle Scholar
  11. Hansel HC, Duke SP, Lofy PT, Gray GA (1988) Use of diagnosic bones to identify and estimate original lengths of ingested prey fishes. Trans Am Fish Soc 117:55–62CrossRefGoogle Scholar
  12. Kulbicki M, Guillemot N, Amand M (2005) A general approach to length–weight relationships for New Caledonian lagoon fishes. Cybium 29:235–252Google Scholar
  13. Ménard F, Labrune C, Shin Y-J, Asine A-S, Bard F-X (2006) Opportunistic predation in tuna: a size-based approach. Mar Ecol Prog Ser 323:223–231CrossRefGoogle Scholar
  14. Myers RA, Worm B (2003) Rapid worldwide depletion of predatory fish communities. Nature 123:280–283CrossRefGoogle Scholar
  15. Nesis KN (1987) Cephalopods of the world. TFH Publications Inc, Neptune CityGoogle Scholar
  16. Potier, M., Lucas, V, Marsac, F, Sabatié, R, Ménard F (2002) On-going research activities on trophic ecology of tuna in equatorial ecosystems of the Indian Ocean. Fourth session of the IOTC working party on tropical tunas, Shangaï, Chine, 3–11/06/2002. WPTT/02/24 IOTC Proceedings 5: 368–374Google Scholar
  17. Potier M, Marsac F, Cherel Y, Lucas V, Sabatié R, Maury O, Ménard F (2007) Forage fauna in the diet of three large pelagic fishes (lancetfish, swordfish and yellowfin tuna) in the western equatorial Indian Ocean. Fish Res 83:60–72CrossRefGoogle Scholar
  18. Potier M, Romanov E, Cherel Y, Sabatié R, Zamorov V, Ménard F (2008) Spatial distribution of Cubiceps pauciradiatus (Perciformes: Nomeidae) in the tropical Indian Ocean and its importance in the diet of large pelagic fishes. Aquat Living Resour 21:123–134CrossRefGoogle Scholar
  19. Richardson AJ, Lamberts C, Isaacs G, Moloney CL, Gibbons MJ (2000) Length-weight relationships of some important forage crustaceans from South Africa. Naga Rep 23(2):29–33Google Scholar
  20. Ricker WE (1958) Handbook of computations for biological statistics of fish populations. Fish Res Board Can 119:1–300Google Scholar
  21. Romanov E, Potier M, Zamorov V, Ménard F (2009) The swimming crab Charybdis smithii: distribution, biology and trophic role in the pelagic ecosystem of the western Indian Ocean. Mar Biol 156:1089–1107CrossRefGoogle Scholar
  22. Scharf FS, Buckel JA, Juanes F, Conover DO (1997) Estimating piscine prey size from partial remains: testing for shift in foraging mode by juvenile blue fish. Env Biol Fish 49:377–388CrossRefGoogle Scholar
  23. Smale MJ, Watson G, Hecht T (1995) Otolith Atlas of southern African marine fishes Ichthyological Monographs. J/L/B/Smith Institute of Ichthyology, GrahamstownGoogle Scholar
  24. Smith MM, Heemstra PC (1986) Smiths’ sea fishes. Southern Book Pub, JohannesburgGoogle Scholar
  25. Thurstan RH, Brockington S, Roberts CM (2010) The effects of 118 years of industrial fishing on UK bottom trawl fisheries. Nature Communications, 1–6Google Scholar
  26. Tregouboff G, Rose M (1978) Manuel de planctonologie méditerranéenne. CNRS, ParisGoogle Scholar
  27. Xinjun C, Bilin L, Siquan T, Weiguo Q, Xiaohu Z (2007) Fishery biology of purpleback squid, Sthenoteuthis oualaniensis, in the northwest Indian Ocean. Fish Res 83:98–104CrossRefGoogle Scholar
  28. Zar JH (1999) Biostatistical analysis, 4th edition. Prentice-Hall International PublicationsGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Michel Potier
    • 1
  • Frédéric Ménard
    • 1
  • Herman Doris Benivary
    • 2
  • Richard Sabatié
    • 3
  1. 1.IRD, UMR 212 EME (IRD/Ifremer/UM2), Centre de Recherche Halieutique Méditerranéenne et TropicaleSète CedexFrance
  2. 2.Institut Universitaire de Science de l’Environnement et de Santé, Université d’AntsirananaMadagascarFrance
  3. 3.Agrocampus Ouest, Pôle HalieutiqueRennes CedexFrance

Personalised recommendations