Length-based growth, maturity and natural mortality of the cockfish Callorhinchus callorhynchus (Linnaeus, 1758) off Coquimbo, Chile

  • Carolina Alarcón
  • Luis A. CubillosEmail author
  • Enzo Acuña


The growth rate, reproductive aspects, and natural mortality of chimaeras and ratfish are poorly known. In this study, life-history parameters for cockfish Callorhinchus callorhynchus (Holocephali—Callorhinchidae) are estimated, which is an important fish resource exploited in Chile. Specimens were sampled from the artisanal fishery captures, from November 2006 to November 2007. The standard length (SL) of males fluctuated between 20 and 62 cm, and between 21 and 70 cm for females. Von Bertalanffy growth parameters were estimated through length-frequency data analysis using MULTIFAN. The length-weight relationship and von Bertalanffy growth parameters were significantly different for males and females, as well as the length at 50% maturity. For males a model with 5 age-classes was the best, with asymptotic length L  = 52 cm SL, growth coefficient K = 0.473 yr−1, and age at length zero t 0 = −0.690 yrs. For females the best model was represented by 10 age-classes (L  = 70.3 cm SL, K = 0.193 yr−1, t 0 = −1.158 yrs) in the length-frequency data sets. Length at 50% maturity of males was estimated in 43.7 cm SL, and in 50.2 cm SL for females. The natural mortality rate fluctuated between 0.42 and 0.82 yr−1 for males and between 0.12 and 0.37 yr−1 for females, depending upon the method used. It is concluded that C. callorhynchus is a species with life-history parameters significantly different between males and females, and such differences should be taken into account in future population dynamics analysis.


Life history Growth Maturity Mortality Length-frequency data Chondrichthyans Holocephalan South America (Chile) 



We are grateful to the Fondo de Investigación Pesquera ( for funding this research through Grant FIP 2006–18. We also thank G Aedo, I Veas, M Pedraza, and S Hernández for considerable assistance with the sampling, collection and preparation of biological samples and data, and M Araya from Universidad Arturo Prat for facilitating the data from the cultivation of egg cases. LC thank to three anonymous referees, whose comments and suggestions permitted to improve the manuscript. This research complied with the current Chilean law.


  1. Abarca L, Gálvez P, Céspedes R, Olguín A, Miranda H, Adarme L, Young Z (1997) Estudio biológico pesquero de los recursos demersales explotados por la flota artesanal en el litoral de la III y IV regiones. Inf Téc FIP /IT 1997–17:1–243Google Scholar
  2. Acuña E, Villarroel JC, Araya M, Hernández S, Andrade M, Peñailillo J (2007) Estudio biológico-pesquero de los recursos cabinza, machuelo, sierra y blanquillo en la III y IV Regiones. Inf Téc FIP/IT 2006–53:1–247Google Scholar
  3. Alverson DL, Carney MJ (1975) A graphic review of the growth and decay of population cohorts. J Cons Int Explor Mer 36:133–143Google Scholar
  4. Au DW, Smith SE (1997) A demographic method with population density compensation for estimating productivity and yield per recruit of the leopard shark (Triakis semifasciata). Can J Fish Aquat Sci 54:415–420CrossRefGoogle Scholar
  5. Barnett LA, Earley RL, Ebert DA, Caillet GM (2009) Maturity, fecundity, and reproductive cycle of the ratfish, Hydrolagus colliei. Mar Biol 156:301–316CrossRefGoogle Scholar
  6. Caillet GM (1992) Demography of the central California population of the leopard shark (Triakis semifasciata). Aust J Mar Freshwater Res 43:183–193CrossRefGoogle Scholar
  7. Chen S, Watanabe S (1989) Age dependence of natural mortality coefficient in fish population dynamics. Nippon Suisan Gakkaishi 55:205–208Google Scholar
  8. Conrath CL, Musik JA (2002) Reproductive biology of the smooth dogfish, Mustelus canis, in the northwest Atlantic Ocean. Environ Biol Fish 64:367–377CrossRefGoogle Scholar
  9. Cortés E (1998) Demographic analysis as an aid in shark stock assessment and management. Fish Res 8:299–344Google Scholar
  10. Cortés E (2000) Life history patterns and correlations in sharks. Rev Fish Sci 8:299–344Google Scholar
  11. Cortés E (2002) Incorporating uncertainty into demographic modeling: application to shark populations and their conservation. Conserv Biol 16:1048–1062CrossRefGoogle Scholar
  12. Cortés E (2004) Life history patterns, demography, and population dynamics. In: Carrier JC, Musick JA, Heithaus MR (eds) Biology of sharks and their relatives. CRC, Boca Raton, pp 449–469CrossRefGoogle Scholar
  13. Cortés E (2007) Chondrychthyan demographic modelling: an essay on its use, abuse and future. Mar Freshwater Res 58:4–6CrossRefGoogle Scholar
  14. Cubillos L, Araya M (2007) Estimaciones empíricas de mortalidad natural en el bacalao de profundidad (Dissostichus eleginoides Smitt, 1898). Rev Biol Mar Oceanogr 42:287–297CrossRefGoogle Scholar
  15. Cubillos LA, Alarcón R, Brante A (1999) Empirical estimates of natural mortality for the Chilean hake (Merluccius gayi): evaluation of precision. Fish Res 42:147–153CrossRefGoogle Scholar
  16. Dean B (1906) Chimaeroid fishes and their development, vol 32. Carnegie Institute Publication, Washington D.CGoogle Scholar
  17. Di Giácomo EE, Perier MR (1994) Reproductive biology of the cockfish, Callorhynchus callorhynchus (Holocephali:Callorhynchidae), in Patagonian waters (Argentina). Fish Bull 92:531–539Google Scholar
  18. Didier DA, LeClair EE, Vanbuskirk DR (1998) Embryonic staging and external features of development of the chimaeroid fish, Callorhinchus milii (Holocephali, Callorhinchidae). J Morphol 236:25–47CrossRefGoogle Scholar
  19. Ebert DA (2005) Reproductive biology of skates, Bathyraja (Ishiyama), along the eastern Bering Sea continental slope. J Fish Biol 66:618–649CrossRefGoogle Scholar
  20. Fournier DA, Sibert JR, Majkowski J, Hampton J (1990) MULTIFAN a likelihood-based method for estimating growth parameters and age composition from multiple frequency data sets illustrated using data for southern bluefin tuna (Thunnus maccoyii). Can J Fish Aquat Sci 47:301–317CrossRefGoogle Scholar
  21. Francis MP (1997) Spatial and temporal variation in the growth rate of elephantfish (Callorhinchus milli). NZ J Mar Freshw Res 31:9–23CrossRefGoogle Scholar
  22. Francis MP, Maolagáin Ó, Stevens D (2001) Age, growth, and sexual, maturity of two New Zealand endemic skates, Dipturus nasutus and D. innominatus. NZ J Mar Freshw Res 35:831–842CrossRefGoogle Scholar
  23. Freer DWL, Griffiths CL (1993a) Estimation of age and growth in the St Joseph Callorhinchus capensis (Dumeril). S Afr J Mar Sci 13:75–81CrossRefGoogle Scholar
  24. Freer DWL, Griffiths CL (1993b) The fishery for, and general biology of, the St Joseph Callorhinchus capensis (Dumeril) off the South-western Cape, South Africa. S Afr J Mar Sci 13:63–74CrossRefGoogle Scholar
  25. Frisk MG, Miller TJ, Fogarty MJ (2001) Estimation and analysis of biological parameters in elasmobranch fishes: a comparative life history study. Can J Fish Aquat Sci 58:969–981CrossRefGoogle Scholar
  26. Froese R (2006) Cube law, condition factor and weight-length relationships: history, meta-analysis and recommendations. J Appl Ichthyol 22:241–253CrossRefGoogle Scholar
  27. Hoenig JM (1983) Empirical use of longevity data to estimate mortality rates. Fish Bull 82:898–902Google Scholar
  28. Holden MJ (1973) Are long-term sustainable fisheries for elasmobranchs possible? Rapp p-v reun - Comm Int Explor Sci Mer Mediterr 64:360–367Google Scholar
  29. Ihaka R, Gentleman R (1996) R: a language for data analysis and graphics. J Comput Graph Stat 5:299–314CrossRefGoogle Scholar
  30. Loefer JK, Sedberry GR (2003) Life history of the Atlantic sharpnose shark (Rhizoprionodon terraenovae) (Richardson, 1836) off the southeastern United States. Fish Bull 101:75–88Google Scholar
  31. Mann G (1954) La vida de los peces en aguas chilenas. Instituto de Investigaciones Veterinarias, Universidad de Chile, SantiagoGoogle Scholar
  32. McAuley RB, Simpfendorfer CA, Hall NG (2007) A method for evaluating the impacts of fishing mortality and stochastic influences on the demography of two long-lived shark stocks. ICES J Mar Sci 64:1710–1722CrossRefGoogle Scholar
  33. Moura T, Figueiredo I, Bordalo-Machado P, Serrano-Gordo L (2004) Growth pattern and reproductive strategy of the holocephalan Chimaera monstrosa along the Portuguese continental slope. J Mar Biol Assoc UK 84:801–804CrossRefGoogle Scholar
  34. Pauly D (1980) On the interrelationships between natural mortality, growth parameters and mean environmental temperature in 175 fish stocks. J Cons Int Explor Mer 39:175–192Google Scholar
  35. Rickhter VA, Efanov VN (1976) On one of the approaches to estimation of natural mortality of fish populations. Report No. 76/VI/8, International Commission of the Northwest Atlantic FisheriesGoogle Scholar
  36. Stearns SC (1992) The evolution of life histories. Oxford University Press, OxfordGoogle Scholar
  37. Stevens JD, Bonfil R, Dulvy NK, Walker PA (2000) The effects of fishing on sharks, rays, and chimeras (chondrichthyans), and the implications for marine ecosystems. ICES J Mar Sci 57:476–494CrossRefGoogle Scholar
  38. Sulikowski JA, Kneebone J, Elzey S, Danley P, Howell WH, Tsang PCW (2005a) Age and growth estimates of the thorny skate, Amblyraja radiata, in the Gulf of Maine. Fish Bull 103:161–168Google Scholar
  39. Sulikowski JA, Kneebone J, Elzey S, Danley P, Howell WH, Tsang PCW (2005b) The reproductive cycle of the thorny skate, Amblyraja radiata, in the Gulf of Maine. Fish Bull 103:536–543Google Scholar
  40. Sulikowski JA, Tsang PCW, Howell WH (2005c) Age and size at sexual maturity for the winter skate, Leucoraja ocellata, in the western Gulf of Maine based on morphological, histological and steroid hormone analyses. Environ Biol Fish 72:429–441CrossRefGoogle Scholar
  41. Sulikowski JA, Irvine SB, DeValerio KC, Carlson JK (2007) Age, growth and maturity of the roundel skate, Raja texana, from the Gulf of Mexico, USA. Mar Freshwater Res 58:41–53CrossRefGoogle Scholar
  42. Sullivan KJ (1977) Age and growth of the elephant fish Callorhinchus milli (Elasmobranchii:Callorhynchidae). NZ J Mar Freshw Res 11:745–753CrossRefGoogle Scholar
  43. Venables WN, Ripley BD (2002) Modern applied statistics with S (Statistics computing). Springer, BerlinGoogle Scholar
  44. Walker TI (1998) Can shark resources be harvested sustainably? A question revisited with a review of shark fisheries. Mar Freshwater Res 49:553–572CrossRefGoogle Scholar
  45. Wang Y, Liu O (2006) Estimation of natural mortality using statistical analysis of fisheries catch-at-age data. Fish Res 78:342–351CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Carolina Alarcón
    • 1
  • Luis A. Cubillos
    • 1
    Email author
  • Enzo Acuña
    • 2
  1. 1.Magister en Ciencias con mención Pesquerías, Laboratorio de Evaluación de Poblaciones Marinas (EPOMAR), Departamento de Oceanografía, Facultad de Ciencias Naturales y OceanográficasUniversidad de ConcepciónConcepciónChile
  2. 2.Area de Pesquerías, Departamento de Biología Marina, Facultad de Ciencias del MarUniversidad Católica del NorteCoquimboChile

Personalised recommendations