Advertisement

Environmental Biology of Fishes

, Volume 89, Issue 2, pp 173–186 | Cite as

Comparative population genetics of Basilichthys microlepidotus (Atheriniformes: Atherinopsidae) and Trichomycterus areolatus (Siluriformes: Trichomycteridae) in north central Chile

  • Claudio Quezada-Romegialli
  • Mabel Fuentes
  • David VélizEmail author
Article

Abstract

To describe comparative population genetic structure of the Chilean silverside Basilichthys microlepidotus and the catfish Trichomycterus areolatus, four rivers and three sites within each river were investigated by the analysis of haplotype polymorphisms of the mitochondrial Control Region. For both species, analyses revealed significant differentiation among rivers and low differences within rivers. However, the species differ in haplotype composition; individuals of B. microlepidotus shared some haplotypes in all four rivers, while individuals of T. areolatus showed a different haplotype composition in most rivers. This difference may be explained by the different ecological features of the species. Assuming that both silversides and catfish were present before the separation of the rivers, B. microlepidotus migrated after river isolation, probably using coastal water, while T. areolatus has probably never migrated between these rivers. The long times that the studied rivers have been separated should be taken into account in future conservation plans for the freshwater fish of Chile.

Keywords

Silverside Catfish Andes mountains Chilean rivers Control Region 

Notes

Acknowledgments

We are grateful to the editor and the anonymous reviewers for their constructive comments and corrections to the manuscript. Thanks to R. Gauci, P. Acuña and M.C. Sabando for field assistance, M. Espinoza for lab assistance and to L Eaton for reviewing English version of the manuscript. This work was supported by Fondecyt 11060496 to DV. DV thanks also Grant PFB-23 (CONICYT, Chile) and Grant ICM P05-002. CQR thanks Master CONICYT Grant.

References

  1. Aceituno P (1988) On the functioning of the Southern Oscillation in the South American sector. Part I: Surface climate. Mon Wea Rev 116:505–524CrossRefGoogle Scholar
  2. Aljanabi SM, Martinez I (1997) Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res 25:4692–4693CrossRefPubMedGoogle Scholar
  3. Arratia G (1990) The South American Trichomycterinae (Teleostei: Siluriformes), a problematic group. In: Peters G, Hutterer R (eds) Vertebrates in the tropics. Museum Alexander Koenig, BonnGoogle Scholar
  4. Arratia G (1997) Brazilian and Austral freshwater fish faunas of South America. A contrast. In: Ulrich H (ed) Tropical biodiversity and systematics. Museum Alexander Koenig, Bonn, pp 179–187Google Scholar
  5. Arratia G, Peñafort B, Menu-Marque S (1983) Peces de la región sureste de Los Andes y sus probables relaciones biogeográficas actuales. Deserta 7:48–108Google Scholar
  6. Azpelicueta M, Rubilar A (1998) A miocene nematogenys (Teleostei: Siluriformes: Nematogenyidae) from south-central Chile. J Vertebr Paleontol 18:475–483CrossRefGoogle Scholar
  7. Bamber R, Henderson P (1988) Pre-adaptive plasticity in atherinids and the estuarine seat of teleost evolution. J Fish Biol 33:17–23CrossRefGoogle Scholar
  8. Bandelt H, Forster P, Rohl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37PubMedGoogle Scholar
  9. Beerli P (2008) Migrate version 3.0: a maximum likelihood and Bayesian estimator of gene flow using the coalescent. Distributed over the Internet at http://popgen.scs.edu/migrate.html.
  10. Beheregaray L, Sunnucks P, Briscoe DA (2002) A rapid fish radiation associated with the last sea-level changes in southern Brazil: the silverside Odontesthes perugiae complex. Proc R Soc Lond B Biol Sci 269:65–73CrossRefGoogle Scholar
  11. Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (1996-2004) GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR, Université de Montpellier II, Montpellier (France). 5000.Google Scholar
  12. Bowen B, Muss A, Rocha L, Grant W (2006) Shallow mtDNA coalescence in Atlantic pygmy angelfishes (genus Centropyge) indicates a recent invasion from the Indian Ocean. J Hered 97:1CrossRefPubMedGoogle Scholar
  13. Burridge C, Craw D, Jack D, King T, Waters J, Crandall K (2008) Does fish ecology predict dispersal across a river drainage divide? Evolution 62:1484–1499CrossRefPubMedGoogle Scholar
  14. Charrier R, Pinto L, Rodríguez MP (2007) Tectonostratigraphic evolution of the Andean Orogen in Chile. In: Moreno T, Gibbons W (eds) The geology of Chile. The Geological Society, London, pp 21–114Google Scholar
  15. Charrier R, Farías M, Maksaev V (2009) Evolución tectónica, paleogeográfica y metalogénica durante el Cenozoico en los Andes de Chile norte y central e implicaciones para las regiones adyacentes de Bolivia y Argentina. In: Ramos V, Folguera A (eds) XVII Congreso Geológico Argentino. Sociedad Geológica Argentina, San Salvador de JujuyGoogle Scholar
  16. Clapperton C (1994) The quaternary glaciation of Chile: a review. Rev Chil Hist Nat 67:369–383Google Scholar
  17. Corpet F (1988) Multiple sequence alignments with hierarchical clustering. Nucleic Acids Res 16:10881–10890CrossRefPubMedGoogle Scholar
  18. de Pinna MC, Wosiacki W (2003) Family Trichomycteridae. (Pencil of parasitic catfishes). In: Reis RE, Kullander SO, Ferraris CJ Jr (eds) Check list of the freshwater fishes of South and Central America. EDIPUCRS, Porto AlegreGoogle Scholar
  19. DeWoody JA, Avise JC (2000) Microsatellite variation in marine, freshwater and anadromous fishes compared with other animals. J Fish Biol 56:461–473CrossRefGoogle Scholar
  20. Donaldson K, Wilson R (1999) Amphi-panamic geminates of snook (Percoidei: Centropomidae) provide a calibration of the divergence rate in the mitochondrial DNA control region of fishes. Mol Phylogenet Evol 13:208–213CrossRefPubMedGoogle Scholar
  21. Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214CrossRefPubMedGoogle Scholar
  22. Duarte W, Feito R, Jara C, Moreno C, Orellana AE (1971) Ictiofauna del sistema hidrográfico del río Maipo. Bol Mus Nac Hist Nat (Chile) 32:227–268Google Scholar
  23. Dyer B (1998) Phylogenetic systematics and historical biogeography of the Neotropical silverside family Atherinopsidae (Teleostei, Atheriniformes). In: Malabarba LR, Reis RE, Vari RP, Lucena ZM, Lucena CAS (eds) Phylogeny and classification of neotropical fishes. EDIPUCRS, Porto Alegre, pp 519–536Google Scholar
  24. Dyer B (2000a) Revision sistemática de los pejerreyes de Chile (Teleostei, Atheriniformes). Estud Oceanol (Chile) 19:99–127Google Scholar
  25. Dyer B (2000b) Systematic review and biogeography of the freshwater fishes of Chile. Estud Oceanol (Chile) 19:77–98Google Scholar
  26. Excoffier L, Laval G, Schneider S (2005) Arlequin ver 3.0: an integrated software package for population genetics data analysis. Evol Bioinform 1:47–50, OnlineGoogle Scholar
  27. Farías M, Charrier R, Carretier S, Martinod J, Fock A, Campbell D, Cáceres J, Comte D (2008) Late Miocene high and rapid surface uplift and its erosional response in the Andes of central Chile (33º–35ºS). Tecton. 27: TC1005, doi: 10.1029/2006TC002046.
  28. Filatov DA (2002) ProSeq: a software for preparation and evolutionary analysis of DNA sequence data sets. Mol Ecol Notes 2:621–624CrossRefGoogle Scholar
  29. Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925PubMedGoogle Scholar
  30. Giambiagi LB, Ramos VA, Godoy E, Alvarez PP, Orts S (2003) Cenozoic deformation and tectonic style of the Andes, between 33° and 34° south latitude. Tecton 22:1041. doi: 10.1029/2001TC001354 CrossRefGoogle Scholar
  31. Gregory-Wodzicki KM (2000) Uplift history of the Central and Northern Andes: a review. Geol Soc Am Bull 112:1091–1105CrossRefGoogle Scholar
  32. Habit E, Dyer B, Vila I (2006) Estado de conocimiento de los peces dulceacuícolas de Chile. Gayana 70:100–113Google Scholar
  33. Harpending H (1994) Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Hum Biol 66:591–600PubMedGoogle Scholar
  34. Harpending H, Sherry S, Rogers A, Stoneking M (1993) The genetic structure of ancient human populations. Curr Anthropol 34:483CrossRefGoogle Scholar
  35. Harrod C, Griffiths D, McCarthy TK, Rosell R (2001) The Irish pollan. Coregonus autumnalis: options for its conservation. J Fish Biol 59:339–355CrossRefGoogle Scholar
  36. Jondeung A, Sangthong P, Zardoya R (2007) The complete mitochondrial DNA sequence of the Mekong giant catfish (Pangasianodon gigas), and the phylogenetic relationships among Siluriformes. Gene 387:49–57CrossRefPubMedGoogle Scholar
  37. Koblmuller S, Sturmbauer C, Verheyen E, Meyer A, Salzburger W (2006) Mitochondrial phylogeny and phylogeography of East African squeaker catfishes (Siluriformes: Synodontis). BMC Evol Biol 6:49CrossRefPubMedGoogle Scholar
  38. Lévêque C, Oberdorff T, Paugy D, Stiassny M, Tedesco P (2008) Global diversity of fish (Pisces) in freshwater. Hydrobiol 595:545–567CrossRefGoogle Scholar
  39. Mank J, Avise J (2006) Supertree analyses of the roles of viviparity and habitat in the evolution of atherinomorph fishes. J Evol Biol 19:734CrossRefPubMedGoogle Scholar
  40. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  41. Ministerio Secretaría General de la Presidencia (2008) Aprueba y oficializa nómina para el tercer proceso de clasificación de especies según su estado de conservación. Decreto N°51 of 2008. Santiago, Chile.Google Scholar
  42. Miya M, Takeshima H, Endo H, Ishiguro NB, Inoue JG, Mukai T, Satoh TP, Yamagushi M, Kawagushi A, Mauchi K, Shikai SM, Nishida M (2003) Major patterns of higher teleostean phylogenies: a new perspective based on 100 complete mitochondrial DNA sequences. Mol Phylogenet Evol 26:121–138CrossRefPubMedGoogle Scholar
  43. Moilanen A, Leathwick J, Elit J (2008) A method for spatial freshwater conservation prioritization. Freshw Biol 53:577–592CrossRefGoogle Scholar
  44. Perez-Losada M, Bond-Buckup G, Jara C, Crandall K (2004) Molecular systematics and biogeography of the Southern South American Freshwater “Crabs” Aegla (Decapoda: Anomura: Aeglidae) using multiple heuristic tree search approaches. Syst Biol 53:767–780CrossRefPubMedGoogle Scholar
  45. Posada D, Crandall K (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817CrossRefPubMedGoogle Scholar
  46. Rambaut A, Drummond A (2003) Tracer: a program for analysing results from Bayesian MCMC programs such as BEAST and MrBayes, Oxford, UK. http://evolve.zoo.ox.ac.uk/software.html.
  47. Ramos VA, Cristallini EO, Pérez DJ (2002) The pampean flat-slab of the Central Andes. Journal of South American Earth Sciences 15:59–78CrossRefGoogle Scholar
  48. Ricciardi A, Rasmussen J (1999) Extinction rates of North American freshwater fauna. Conserv Biol: 1220–1222.Google Scholar
  49. Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497CrossRefPubMedGoogle Scholar
  50. Rubilar A (1994) Diversidad ictiológica en depósitos continendddtales miocenos de la Formación Cura-Mallín, Chile (37-39 S): implicancias paleográficas. Rev Geol Chile 21:3–29Google Scholar
  51. Ruzzante DE, Walde SJ, Cussac VE, Dalebout ML, Seibert J, Ortubay S, Habit E (2006) Phylogeography of the Percichthyidae (Pisces) in Patagonia: roles of orogeny, glaciation, and volcanism. Mol Ecol 15:2949–2968CrossRefPubMedGoogle Scholar
  52. Saunders D, Meeuwig J, Vincent A (2002) Freshwater protected areas: strategies for conservation. Conserv Biol 16:30–41CrossRefGoogle Scholar
  53. Sievers H, Vega S (2000) Physical-chemical response of Valparaíso Bay to upwelling generated at Point Curaumilla and to El Niño Phenomenon. Rev Biol Mar Oceanogr 35:153–168CrossRefGoogle Scholar
  54. Smith M, Kelt D, Patton J (2001) Testing models of diversification in mice in the Abrothrix olivaceus/xanthorhinus complex in Chile and Argentina. Mol Ecol 10:397–405CrossRefPubMedGoogle Scholar
  55. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585PubMedGoogle Scholar
  56. Thacker CE, Unmack PJ, Matsui L, Rifenbark N (2007) Comparative phylogeography of five sympatric Hypseleotris species (Teleostei: Eleotridae) in south-eastern Australia reveals a complex pattern of drainage basin exchanges with little congruence across species. J Biogeogr 34:1518–1533CrossRefGoogle Scholar
  57. Urzúa R, Díaz C, Karmy E, Moreno C (1977) Alimentación natural de Basilichthys australis en Tejas Verdes. Chile Biol Pesq (Chile) 9:45–61Google Scholar
  58. Victoriano PF, Ortiz JC, Benavides E, Adams BJ, Sites JW Jr (2008) Comparative phylogeography of codistributed species of Chilean Liolaemus (Squamata: Tropiduridae) from the central-southern Andean range. Mol Ecol 17:2397–2416CrossRefPubMedGoogle Scholar
  59. Vila I, Fuentes L, Contreras M (1999) Peces límnicos de Chile. Bol Mus Nac Hist Nat (Chile) 48:61–75Google Scholar
  60. Vila I, Pardo R, Dyer B, Habit E (2006) Peces límnicos: diversidad, origen y estado de conservación. In: Vila I, Veloso A, Schlatter R, Ramírez C (eds) Macrófitas y vertebrados de los sistemas límnicos de Chile. Editorial Universitaria, Santiago de Chile, pp 73–102Google Scholar
  61. Wood C, Gross M (2008) Elemental conservation units: communicating extinction risk without dictating targets for protection. Conserv Biol 22:36–47CrossRefPubMedGoogle Scholar
  62. Youngson A, Jordan W, Verspoor E, McGinnity P, Cross T, Ferguson A (2003) Management of salmonid fisheries in the British Isles: towards a practical approach based on population genetics. Fish Res 62:193–209CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Claudio Quezada-Romegialli
    • 1
  • Mabel Fuentes
    • 1
  • David Véliz
    • 1
    Email author
  1. 1.Departamento de Ciencias Ecológicas and Instituto de Ecología y Biodiversidad, Facultad de CienciasUniversidad de ChileSantiagoChile

Personalised recommendations