Environmental Biology of Fishes

, Volume 88, Issue 2, pp 169–188 | Cite as

Teleost fish with specific genome duplication as unique models of vertebrate evolution

Article

Abstract

Whole-genome duplication (WGD) is believed to be one of the major evolutionary events that shaped the genome organization of vertebrates. Here, we review recent research on vertebrate genome evolution, specifically on WGD and its consequences for gene and genome evolution in teleost fishes. Recent genome analyses confirmed that all vertebrates experienced two rounds of WGD early in their evolution, and that teleosts experienced a subsequent additional third-round (3R)-WGD. The 3R-WGD was estimated to have occurred 320–400 million years ago in a teleost ancestor, but after its divergence from a common ancestor with living non-teleost actinopterygians (Bichir, Sturgeon, Bowfin, and Gar) based on the analyses of teleost-specific duplicate genes. This 3R-WGD was confirmed by synteny analysis and ancestral karyotype inference using the genome sequences of Tetraodon and medaka. Most of the tetrapods, on the other hand, have not experienced an additional WGD; however, they have experienced repeated chromosomal rearrangements throughout the whole genome. Therefore, different types of chromosomal events have characterized the genomes of teleosts and tetrapods, respectively. The 3R-WGD is useful to investigate the consequences of WGD because it is an evolutionarily recent WGD and thus teleost genomes retain many more WGD-derived duplicates and “traces” of their evolution. In addition, the remarkable morphological, physiological, and ecological diversity of teleosts may facilitate understanding of macrophenotypic evolution on the basis of genetic/genomic information. We highlight the teleosts with 3R-WGD as unique models for future studies on ecology and evolution taking advantage of emerging genomics technologies and systems biology environments.

Keywords

3R-WGD Gene duplication Ancestral karyotype Chromosomal evolution Teleost diversity 

Notes

Acknowledgments

The manuscript benefited from the comments of two anonymous reviewers. We thank our colleagues at the Ocean Research Institute and the Graduate School of Frontier Sciences of the University of Tokyo, and the National Institute of Genetics for helpful discussions and comments. This work was partially supported by Grants-in-Aid from the Japan Society for the Promotion of Science to MN.

References

  1. Abi-Rached L, Gilles A, Shiina T, Pontarotti P, Inoko H (2002) Evidence of en bloc duplication in vertebrate genomes. Nat Genet 31:100–105. doi: 10.1038/ng855 PubMedCrossRefGoogle Scholar
  2. Allendorf FW, Thorgaard GH (1984) Tetraploidy and the evolution of salmonid fishes. In: Turner BJ (ed) The evolutionary genetics of fishes. Plenum Press, New York, pp 1–53Google Scholar
  3. Amemiya CT, Prohaska SJ, Hill-Force A, Cook A, Wasserscheid J, Ferrier DE, Pascual-Anaya J, Garcia-Fernàndez J, Dewar K, Stadler PF (2008) The amphioxus Hox cluster: characterization, comparative genomics, and evolution. J Exp Zoolog B Mol Dev Evol 310:465–477. doi: 10.1002/jez.b.21213 CrossRefGoogle Scholar
  4. Amores A, Force A, Yan YL, Joly L, Amemiya C, Fritz A, Ho RK, Langeland J, Prince V, Wang YL, Westerfield M, Ekker M, Postlethwait JH (1998) Zebrafish hox clusters and vertebrate genome evolution. Science 282:1711–1714. doi: 10.1126/science.282.5394.1711 PubMedCrossRefGoogle Scholar
  5. Amores A, Suzuki T, Yan YL, Pomeroy J, Singer A, Amemiya C, Postlethwait JH (2004) Developmental roles of pufferfish Hox clusters and genome evolution in ray-fin fish. Genome Res 14:1–10. doi: 10.1101/gr.1717804 PubMedCrossRefGoogle Scholar
  6. Aparicio S (2000) Vertebrate evolution: recent perspectives from fish. Trends Genet 16:54–56. doi: 10.1016/S0168-9525(99)01934-4 PubMedCrossRefGoogle Scholar
  7. Aparicio S, Hawker K, Cottage A, Mikawa Y, Zuo L, Venkatesh B, Chen E, Krumlauf R, Brenner S (1997) Organization of the Fugu rubripes Hox clusters: evidence for continuing evolution of vertebrate Hox complexes. Nat Genet 16:79–83. doi: 10.1038/ng0597-79 PubMedCrossRefGoogle Scholar
  8. Aparicio S, Chapman J, Stupka E, Putnam N, Chia JM, Dehal P, Christoffels A, Rash S, Hoon S, Smit A, Gelpke MD, Roach J, Oh T, Ho IY, Wong M, Detter C, Verhoef F, Predki P, Tay A, Lucas S, Richardson P, Smith SF, Clark MS, Edwards YJ, Doggett N, Zharkikh A, Tavtigian SV, Pruss D, Barnstead M, Evans C, Baden H, Powell J, Glusman G, Rowen L, Hood L, Tan YH, Elgar G, Hawkins T, Venkatesh B, Rokhsar D, Brenner S (2002) Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science 297:1301–1310. doi: 10.1126/science.1072104 PubMedCrossRefGoogle Scholar
  9. Avise JC, Kitto GB (1973) Phosphoglucose isomerase gene duplication in the bony fishes: an evolutionary history. Biochem Genet 8:113–132. doi: 10.1007/BF00485540 PubMedCrossRefGoogle Scholar
  10. Azuma Y, Kumazawa Y, Miya M, Mabuchi K, Nishida M (2008) Mitogenomic evaluation of the historical biogeography of cichlids toward reliable dating of teleostean divergences. BMC Evol Biol 8:215. doi: 10.1186/1471-2148-8-215 PubMedCrossRefGoogle Scholar
  11. Benton MJ (1993) The fossil record volume 2. Chapman & Hall, LondonGoogle Scholar
  12. Benton MJ, Donoghue PC (2007) Paleontological evidence to date the tree of life. Mol Biol Evol 24:26–53. doi: 10.1093/molbev/msl150 PubMedCrossRefGoogle Scholar
  13. Braasch I, Salzburger W, Meyer A (2006) Asymmetric evolution in two fish-specifically duplicated receptor tyrosine kinase paralogons involved in teleost coloration. Mol Biol Evol 23:1192–1202. doi: 10.1093/molbev/msk003 PubMedCrossRefGoogle Scholar
  14. Braasch I, Schartl M, Volff JN (2007) Evolution of pigment synthesis pathways by gene and genome duplication in fish. BMC Evol Biol 7:74. doi: 10.1186/1471-2148-7-74 PubMedCrossRefGoogle Scholar
  15. Braasch I, Brunet F, Volff JN, Schartl M (2009) Pigmentation pathway evolution after whole genome duplication in fish. Genome Biol Evol, in press. doi: 10.1093/gbe/evp050
  16. Chambers KE, McDaniell R, Raincrow JD, Deshmukh M, Stadler PF, Chiu CH (2009) Hox cluster duplication in the basal teleost Hiodon alosoides (Osteoglossomorpha). Theory Biosci 128:109–120. doi: 10.1007/s12064-009-0056-1 PubMedCrossRefGoogle Scholar
  17. Cheng CH, Chen L (1999) Evolution of an antifreeze glycoprotein. Nature 401:443–444. doi: 10.1038/46721 PubMedCrossRefGoogle Scholar
  18. Chiu CH, Amemiya C, Dewar K, Kim CB, Ruddle FH, Wagner GP (2002) Molecular evolution of the HoxA cluster in the three major gnathostome lineages. Proc Natl Acad Sci U S A 99:5492–5497. doi: 10.1073/pnas.052709899 PubMedCrossRefGoogle Scholar
  19. Chiu CH, Dewar K, Wagner GP, Takahashi K, Ruddle F, Ledje C, Bartsch P, Scemama JL, Stellwag E, Fried C, Prohaska SJ, Stadler PF, Amemiya CT (2004) Bichir HoxA cluster sequence reveals surprising trends in ray-finned fish genomic evolution. Genome Res 14:11–17. doi: 10.1101/gr.1712904 PubMedCrossRefGoogle Scholar
  20. Christoffels A, Koh EG, Chia JM, Brenner S, Aparicio S, Venkatesh B (2004) Fugu genome analysis provides evidence for a whole-genome duplication early during the evolution of ray-finned fishes. Mol Biol Evol 21:1146–1151. doi: 10.1093/molbev/msh114 PubMedCrossRefGoogle Scholar
  21. Christoffels A, Brenner S, Venkatesh B (2006) Tetraodon genome analysis provides further evidence for whole-genome duplication in the ray-finned fish. Comp Biochem Physiol Part D Genomics Proteomics 1:13–19. doi: 10.1016/j.cbd.2005.06.001 CrossRefGoogle Scholar
  22. Conant GC, Wolfe KH (2008) Turning a hobby into a job: how duplicated genes find new functions. Nat Rev Genet 9:938–950. doi: 10.1038/nrg2482 PubMedCrossRefGoogle Scholar
  23. Crow KD, Wagner GP (2006) What is the role of genome duplication in the evolution of complexity and diversity? Mol Biol Evol 23:887–892. doi: 10.1093/molbev/msj083 PubMedCrossRefGoogle Scholar
  24. Crow KD, Stadler PF, Lynch VJ, Amemiya C, Wagner GP (2006) The “fish-specific” Hox cluster duplication is coincident with the origin of teleosts. Mol Biol Evol 23:121–136. doi: 10.1093/molbev/msj020 PubMedCrossRefGoogle Scholar
  25. de Boer JG, Yazawa R, Davidson WS, Koop BF (2007) Bursts and horizontal evolution of DNA transposons in the speciation of pseudotetraploid salmonids. BMC Genomics 8:422PubMedCrossRefGoogle Scholar
  26. Dehal P, Boore JL (2005) Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol 3:e314. doi: 10.1371/journal.pbio.0030314 PubMedCrossRefGoogle Scholar
  27. Donoghue PC, Purnell MA (2005) Genome duplication, extinction and vertebrate evolution. Trends Ecol Evol 20:312–319. doi: 10.1016/j.tree.2005.04.008 PubMedCrossRefGoogle Scholar
  28. Douard V, Brunet F, Boussau B, Ahrens I, Vlaeminck-Guillem V, Haendler B, Laudet V, Guiguen Y (2008) The fate of the duplicated androgen receptor in fishes: a late neofunctionalization event? BMC Evol Biol 8:336. doi: 10.1186/1471-2148-8-336 PubMedCrossRefGoogle Scholar
  29. Ferris SD, Portnoy SL, Whitt GS (1979) The roles of speciation and divergence time in the loss of duplicate gene expression. Theor Popul Biol 15:114–139. doi: 10.1016/0040-5809(79)90030-3 CrossRefGoogle Scholar
  30. Flicek P, Aken BL, Beal K, Ballester B, Caccamo M, Chen Y, Clarke L, Coates G, Cunningham F, Cutts T, Down T, Dyer SC, Eyre T, Fitzgerald S, Fernandez-Banet J, Gräf S, Haider S, Hammond M, Holland R, Howe KL, Howe K, Johnson N, Jenkinson A, Kähäri A, Keefe D, Kokocinski F, Kulesha E, Lawson D, Longden I, Megy K, Meidl P, Overduin B, Parker A, Pritchard B, Prlic A, Rice S, Rios D, Schuster M, Sealy I, Slater G, Smedley D, Spudich G, Trevanion S, Vilella AJ, Vogel J, White S, Wood M, Birney E, Cox T, Curwen V, Durbin R, Fernandez-Suarez XM, Herrero J, Hubbard TJ, Kasprzyk A, Proctor G, Smith J, Ureta-Vidal A, Searle S (2008) Ensembl 2008. Nucleic Acids Res 36:D707–D714. doi: 10.1093/nar/gkm988 PubMedCrossRefGoogle Scholar
  31. Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151:1531–1545PubMedGoogle Scholar
  32. Furlong RF, Holland PW (2002) Were vertebrates octoploid? Philos Trans R Soc Lond B Biol Sci 357:531–544. doi: 10.1098/rstb.2001.1035 PubMedCrossRefGoogle Scholar
  33. Gehring WJ (1998) The homeobox story. Yale University Press, New HavenGoogle Scholar
  34. Gibson TJ, Spring J (2000) Evidence in favour of ancient octaploidy in the vertebrate genome. Biochem Soc Trans 28:259–264PubMedGoogle Scholar
  35. Gregory TR (2005) The evolution of the genome. Elsevier, San DiegoGoogle Scholar
  36. Hashiguchi Y, Nishida M (2007) Evolution of trace amine associated receptor (TAAR) gene family in vertebrates: lineage-specific expansions and degradations of a second class of vertebrate chemosensory receptors expressed in the olfactory epithelium. Mol Biol Evol 24:2099–2107. doi: 10.1093/molbev/msm140 PubMedCrossRefGoogle Scholar
  37. He X, Zhang J (2005) Rapid subfunctionalization accompanied by prolonged and substantial neofunctionalization in duplicate gene evolution. Genetics 169:1157–1164. doi: 10.1534/genetics.104.037051 PubMedCrossRefGoogle Scholar
  38. Hedges SB, Kumar S (2003) Genomic clocks and evolutionary timescales. Trends Genet 19:200–206. doi: 10.1016/S0168-9525(03)00053-2 CrossRefGoogle Scholar
  39. Hoegg S, Meyer A (2005) Hox clusters as models for vertebrate genome evolution. Trends Genet 21:421–424. doi: 10.1016/j.tig.2005.06.004 PubMedCrossRefGoogle Scholar
  40. Hoegg S, Meyer A (2007) Phylogenomic analyses of KCNA clusters in vertebrates: why do some clusters stay intact? BMC Evol Biol 7:139. doi: 10.1186/1471-2148-7-139 PubMedCrossRefGoogle Scholar
  41. Hoegg S, Brinkmann H, Taylor JS, Meyer A (2004) Phylogenetic timing of the fish-specific genome duplication correlates with the diversification of teleost fish. J Mol Evol 59:190–203. doi: 10.1007/s00239-004-2613-z PubMedCrossRefGoogle Scholar
  42. Holland PW, Garcia-Fernàndez J, Williams NA, Sidow A (1994) Gene duplications and the origins of vertebrate development. Dev Suppl 1994:125–133Google Scholar
  43. Horton AC, Mahadevan NR, Ruvinsky I, Gibson-Brown JJ (2003) Phylogenetic analyses alone are insufficient to determine whether genome duplication(s) occurred during early vertebrate evolution. J Exp Zoolog B Mol Dev Evol 299:41–53. doi: 10.1002/jez.b.40 Google Scholar
  44. Hubbs CL (1955) Hybridization between fish species in nature. Syst Zool 4:1–20CrossRefGoogle Scholar
  45. Hufton AL, Groth D, Vingron M, Lehrach H, Poustka AJ, Panopoulou G (2008) Early vertebrate whole genome duplications were predated by a period of intense genome rearrangement. Genome Res 18:1582–1591. doi: 10.1101/gr.080119.108 PubMedCrossRefGoogle Scholar
  46. Hughes MK, Hughes AL (1993) Evolution of duplicate genes in a tetraploid animal, Xenopus laevis. Mol Biol Evol 10:1360–1369PubMedGoogle Scholar
  47. Hughes AL, da Silva J, Friedman R (2001) Ancient genome duplications did not structure the human Hox-bearing chromosomes. Genome Res 11:771–780. doi: 10.1101/gr.GR-1600R PubMedCrossRefGoogle Scholar
  48. Imai S, Sasaki T, Shimizu A, Asakawa S, Hori H, Shimizu N (2007) The genome size evolution of medaka (Oryzias latipes) and fugu (Takifugu rubripes). Genes Genet Syst 82:135–144. doi: 10.1266/ggs.82.135 PubMedCrossRefGoogle Scholar
  49. Inoue JG, Miya M, Tsukamoto K, Nishida M (2003) Basal actinopterygian relationships: a mitogenomic perspective on the phylogeny of the “ancient fish”. Mol Phylogenet Evol 26:110–120. doi: 10.1016/S1055-7903(02)00331-7 PubMedCrossRefGoogle Scholar
  50. Inoue JG, Miya M, Venkatesh B, Nishida M (2005) The mitochondrial genome of Indonesian coelacanth Latimeria menadoensis (Sarcopterygii: Coelacanthiformes) and divergence time estimation between the two coelacanths. Gene 349:227–235. doi: 10.1016/j.gene.2005.01.008 PubMedCrossRefGoogle Scholar
  51. International Human Genome Sequencing Consortium (2004) Finishing the euchromatic sequence of the human genome. Nature 431:931–945. doi: 10.1038/nature03001 CrossRefGoogle Scholar
  52. Jaillon O, Aury JM, Brunet F, Petit JL, Stange-Thomann N, Mauceli E, Bouneau L, Fischer C, Ozouf-Costaz C, Bernot A, Nicaud S, Jaffe D, Fisher S, Lutfalla G, Dossat C, Segurens B, Dasilva C, Salanoubat M, Levy M, Boudet N, Castellano S, Anthouard V, Jubin C, Castelli V, Katinka M, Vacherie B, Biémont C, Skalli Z, Cattolico L, Poulain J, De Berardinis V, Cruaud C, Duprat S, Brottier P, Coutanceau JP, Gouzy J, Parra G, Lardier G, Chapple C, McKernan KJ, McEwan P, Bosak S, Kellis M, Volff JN, Guigó R, Zody MC, Mesirov J, Lindblad-Toh K, Birren B, Nusbaum C, Kahn D, Robinson-Rechavi M, Laudet V, Schachter V, Quétier F, Saurin W, Scarpelli C, Wincker P, Lander ES, Weissenbach J, Roest Crollius H (2004) Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431:946–957. doi: 10.1038/nature03025 PubMedCrossRefGoogle Scholar
  53. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res 32(Database issue):D277-D280. doi:  10.1093/nar/gkh063
  54. Kao HW, Lee SC (2002) Phosphoglucose isomerases of hagfish, zebrafish, gray mullet, toad, and snake, with reference to the evolution of the genes in vertebrates. Mol Biol Evol 19:367–374PubMedGoogle Scholar
  55. Karp PD, Ouzounis CA, Moore-Kochlacs C, Goldovsky L, Kaipa P, Ahrén D, Tsoka S, Darzentas N, Kunin V, López-Bigas N (2005) Expansion of the BioCyc collection of pathway/genome databases to 160 genomes. Nucleic Acids Res 33:6083–6089. doi: 10.1093/nar/gki892 PubMedCrossRefGoogle Scholar
  56. Kasahara M, Nakaya J, Satta Y, Takahata N (1997) Chromosomal duplication and the emergence of the adaptive immune system. Trends Genet 13:90–92. doi: 10.1016/S0168-9525(97)01065-2 PubMedCrossRefGoogle Scholar
  57. Kasahara M, Naruse K, Sasaki S, Nakatani Y, Qu W, Ahsan B, Yamada T, Nagayasu Y, Doi K, Kasai Y, Jindo T, Kobayashi D, Shimada A, Toyoda A, Kuroki Y, Fujiyama A, Sasaki T, Shimizu A, Asakawa S, Shimizu N, Hashimoto S, Yang J, Lee Y, Matsushima K, Sugano S, Sakaizumi M, Narita T, Ohishi K, Haga S, Ohta F, Nomoto H, Nogata K, Morishita T, Endo T, Shin-I T, Takeda H, Morishita S, Kohara Y (2007) The medaka draft genome and insights into vertebrate genome evolution. Nature 447:714–719. doi: 10.1038/nature05846 PubMedCrossRefGoogle Scholar
  58. Kawahara R, Miya M, Mabuchi K, Lavoué S, Inoue JG, Satoh TP, Kawaguchi A, Nishida M (2008) Interrelationships of the 11 gasterosteiform families (sticklebacks, pipefishes, and their relatives): a new perspective based on whole mitogenome sequences from 75 higher teleosts. Mol Phylogenet Evol 46:224–236. doi: 10.1016/j.ympev.2007.07.009 PubMedCrossRefGoogle Scholar
  59. Kawahara R, Miya M, Mabuchi K, Near TJ, Nishida M (2009) Stickleback phylogenies resolved: evidence from mitochondrial genomes and 11 nuclear genes. Mol Phylogenet Evol 50:401–404. doi: 10.1016/j.ympev.2008.10.014 PubMedCrossRefGoogle Scholar
  60. Kellis M, Birren BW, Lander ES (2004) Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature 428:617–624. doi: 10.1038/nature02424 PubMedCrossRefGoogle Scholar
  61. Kim CB, Amemiya C, Bailey W, Kawasaki K, Mezey J, Miller W, Minoshima S, Shimizu N, Wagner G, Ruddle F (2000) Hox cluster genomics in the horn shark, Heterodontus francisci. Proc Natl Acad Sci U S A 97:1655–1660. doi: 10.1073/pnas.030539697 PubMedCrossRefGoogle Scholar
  62. Koh EG, Lam K, Christoffels A, Erdmann MV, Brenner S, Venkatesh B (2003) Hox gene clusters in the Indonesian coelacanth, Latimeria menadoensis. Proc Natl Acad Sci U S A 100:1084–1088. doi: 10.1073/pnas.0237317100 PubMedCrossRefGoogle Scholar
  63. Kumar S, Hedges SB (1998) A molecular timescale for vertebrate evolution. Nature 392:917–920. doi: 10.1038/31927 PubMedCrossRefGoogle Scholar
  64. Kuraku S, Meyer A, Kuratani S (2009) Timing of genome duplications relative to the origin of the vertebrates: did cyclostomes diverge before or after? Mol Biol Evol 26:47–59. doi: 10.1093/molbev/msn222 PubMedCrossRefGoogle Scholar
  65. Kurosawa G, Takamatsu N, Takahashi M, Sumitomo M, Sanaka E, Yamada K, Nishii K, Matsuda M, Asakawa S, Ishiguro H, Miura K, Kurosawa Y, Shimizu N, Kohara Y, Hori H (2006) Organization and structure of hox gene loci in medaka genome and comparison with those of pufferfish and zebrafish genomes. Gene 370:75–82. doi: 10.1016/j.gene.2005.11.015 PubMedCrossRefGoogle Scholar
  66. Lander ES, International Human Genome Sequencing Consortium et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921PubMedCrossRefGoogle Scholar
  67. Lavoué S, Miya M, Inoue JG, Saitoh K, Ishiguro NB, Nishida M (2005) Molecular systematics of the gonorynchiform fishes (Teleostei) based on whole mitogenome sequences: implications for higher-level relationships within the Otocephala. Mol Phylogenet Evol 37:165–177. doi: 10.1016/j.ympev.2005.03.024 PubMedCrossRefGoogle Scholar
  68. Lavoué S, Miya M, Poulsen JY, Møller PR, Nishida M (2008) Monophyly, phylogenetic position and inter-familial relationships of the Alepocephaliformes (Teleostei) based on whole mitogenome sequences. Mol Phylogenet Evol 47:1111–1121. doi: 10.1016/j.ympev.2007.12.002 PubMedCrossRefGoogle Scholar
  69. Ledje C, Kim CB, Ruddle FH (2002) Characterization of Hox genes in the bichir, Polypterus palmas. J Exp Zool 294:107–111. doi: 10.1002/jez.10152 PubMedCrossRefGoogle Scholar
  70. Leggatt RA, Iwama GK (2003) Occurrence of polyploidy in the fishes. Rev Fish Biol Fish 13:237–246. doi: 10.1023/B:RFBF.0000033049.00668.fe CrossRefGoogle Scholar
  71. Lemons D, McGinnis W (2006) Genomic evolution of Hox gene clusters. Science 313:1918–1922. doi: 10.1126/science.1132040 PubMedCrossRefGoogle Scholar
  72. Lister JA, Close J, Raible DW (2001) Duplicate mitf genes in zebrafish: complementary expression and conservation of melanogenic potential. Dev Biol 237:333–344. doi: 10.1006/dbio.2001.0379 PubMedCrossRefGoogle Scholar
  73. Longhurst TJ, Joss JM (1999) Homeobox genes in the australian lungfish Neoceratodus forsteri. J Exp Zool 285:140–145. doi:10.1002/(SICI)1097-010X(19990815)285:2<140::AID-JEZ6>3.0.CO;2-VPubMedCrossRefGoogle Scholar
  74. Lundin LG (1993) Evolution of the vertebrate genome as reflected in paralogous chromosomal regions in man and the house mouse. Genomics 16:1–19. doi: doi:10.1006/geno.1993.1133 PubMedCrossRefGoogle Scholar
  75. Lundin LG, Larhammar D, Hallböök F (2003) Numerous groups of chromosomal regional paralogies strongly indicate two genome doublings at the root of the vertebrates. J Struct Funct Genomics 3:53–63. doi: 10.1023/A:1022600813840 PubMedCrossRefGoogle Scholar
  76. Lynch M (2002) Gene duplication and evolution. Science 297:945–947. doi: 10.1126/science.1075472 PubMedCrossRefGoogle Scholar
  77. Lynch M (2007) Genomic expansion by gene duplication. In: Lynch M (ed) The origins of genome architecture. Sinauer, Sunderland, pp 193–235Google Scholar
  78. Lynch M, Force AG (2000) The origin of interspecific genomic incompatibility via gene duplication. Am Nat 156:590–605. doi: 10.1086/316992 CrossRefGoogle Scholar
  79. Mak HC, Daly M, Gruebel B, Ideker T (2007) CellCircuits: a database of protein network models. Nucleic Acids Res 35:D538–D545. doi: 10.1093/nar/gkl937 PubMedCrossRefGoogle Scholar
  80. Mank JE, Avise JC (2006a) Phylogenetic conservation of chromosome numbers in Actinopterygiian fishes. Genetica 127:321–327. doi: 10.1007/s10709-005-5248-0 PubMedCrossRefGoogle Scholar
  81. Mank JE, Avise JC (2006b) The evolution of reproductive and genomic diversity in ray-finned fishes: insights from phylogeny and comparative analysis. J Fish Biol 69:1–27. doi: 10.1111/j.1095-8649.2006.01132.x CrossRefGoogle Scholar
  82. Martin A (2001) Is tetralogy true? Lack of support for the “one-to-four rule”. Mol Biol Evol 18:89–93PubMedGoogle Scholar
  83. Mayden RL, Chen WJ, Bart HL, Doosey MH, Simons AM, Tang KL, Wood RM, Agnew MK, Yang L, Hirt MV, Clements MD, Saitoh K, Sado T, Miya M, Nishida M (2009) Reconstructing the phylogenetic relationships of the earth’s most diverse clade of freshwater fishes–order Cypriniformes (Actinopterygii: Ostariophysi): a case study using multiple nuclear loci and the mitochondrial genome. Mol Phylogenet Evol 51:500–514. doi: 10.1016/j.ympev.2008.12.015 PubMedCrossRefGoogle Scholar
  84. Merritt TJS, Quattro JM (2001) Evidence for a period of directional selection following gene duplication in a neurally expressed locus of triosephosphate isomerase. Genetics 159:689–697PubMedGoogle Scholar
  85. Meyer A, Málaga-Trillo E (1999) Vertebrate genomics: More fishy tales about Hox genes. Curr Biol 9:R210–R213. doi: 10.1016/S0960-9822(99)80131-6 PubMedCrossRefGoogle Scholar
  86. Meyer A, Schartl M (1999) Gene and genome duplications in vertebrates: the one-to-four (-to-eight in fish) rule and the evolution of novel gene functions. Curr Opin Cell Biol 11:699–704. doi: 10.1016/S0955-0674(99)00039-3 PubMedCrossRefGoogle Scholar
  87. Miya M, Takeshima H, Endo H, Ishiguro NB, Inoue JG, Mukai T, Satoh TP, Yamaguchi M, Kawaguchi A, Mabuchi K, Shirai SM, Nishida M (2003) Major patterns of higher teleostean phylogenies: a new perspective based on 100 complete mitochondrial DNA sequences. Mol Phylogenet Evol 26:121–138. doi: 10.1016/S1055-7903(02)00332-9 PubMedCrossRefGoogle Scholar
  88. Miya M, Satoh TP, Nishida M (2005) The phylogenetic position of toadfishes (order Batrachoidiformes) in the higher ray-finned fish as inferred from partitioned Bayesian analysis of 102 whole mitochondrial genome sequences. Biol J Linn Soc Lond 85:289–306. doi: 10.1111/j.1095-8312.2005.00483.x CrossRefGoogle Scholar
  89. Moghadam HK, Ferguson MM, Danzmann RG (2005) Evolution of Hox clusters in Salmonidae: a comparative analysis between Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss). J Mol Evol 61:636–649. doi: 10.1007/s00239-004-0338-7 PubMedCrossRefGoogle Scholar
  90. Mouse Genome Sequencing Consortium (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562. doi: 10.1038/nature01262 CrossRefGoogle Scholar
  91. Mulley JF, Chiu CH, Holland PW (2006) Breakup of a homeobox cluster after genome duplication in teleosts. Proc Natl Acad Sci U S A 103:10369–10372. doi: 10.1073/pnas.0600341103 PubMedCrossRefGoogle Scholar
  92. Murphy WJ, Pevzner PA, O’Brien SJ (2004) Mammalian phylogenomics comes of age. Trends Genet 20:631–639. doi: 10.1016/j.tig.2004.09.005 PubMedCrossRefGoogle Scholar
  93. Nagasaki M, Doi A, Matsuno H, Miyano S (2003) Genomic object net: I. A platform for modelling and simulating biopathways. Appl Bioinformatics 2:181–184PubMedGoogle Scholar
  94. Nagasaki M, Saito A, Doi A, Matsuno H, Miyano S (2009) Foundations of systems biology: using Cell Illustrator and pathway databases. Springer-Verlag, New YorkGoogle Scholar
  95. Nakatani Y, Takeda H, Kohara Y, Morishita S (2007) Reconstruction of the vertebrate ancestral genome reveals dynamic genome reorganization in early vertebrates. Genome Res 17:1254–1265. doi: 10.1101/gr.6316407 PubMedCrossRefGoogle Scholar
  96. Naruse K, Fukamachi S, Mitani H, Kondo M, Matsuoka T, Kondo S, Hanamura N, Morita Y, Hasegawa K, Nishigaki R, Shimada A, Wada H, Kusakabe T, Suzuki N, Kinoshita M, Kanamori A, Terado T, Kimura H, Nonaka M, Shima A (2000) A detailed linkage map of medaka, Oryzias latipes: comparative genomics and genome evolution. Genetics 154:1773–1784PubMedGoogle Scholar
  97. Naruse K, Tanaka M, Mita K, Shima A, Postlethwait J, Mitani H (2004) A medaka gene map: the trace of ancestral vertebrate proto-chromosomes revealed by comparative gene mapping. Genome Res 14:820–828. doi: 10.1101/gr.2004004 PubMedCrossRefGoogle Scholar
  98. Nelson JS (2006) Fishes of the world, 4th edn. Wiley, New JerseyGoogle Scholar
  99. Ohno S (1970) Evolution by gene duplication. Springer-Verlag, New YorkGoogle Scholar
  100. Ohno S (1999) Gene duplication and the uniqueness of vertebrate genomes circa 1970–1999. Semin Cell Dev Biol 10:517–522. doi: 10.1006/scdb.1999.0332 PubMedCrossRefGoogle Scholar
  101. Pakchung AAH, Simpson PJL, Codd R (2006) Life on earth. Extremophiles continue to move the goal posts Environ Chem 3:77–93. doi: 10.1071/EN05093 Google Scholar
  102. Panopoulou G, Poustka AJ (2005) Timing and mechanism of ancient vertebrate genome duplications—the adventure of a hypothesis. Trends Genet 21:559–567. doi: 10.1016/j.tig.2005.08.004 PubMedCrossRefGoogle Scholar
  103. Panopoulou G, Hennig S, Groth D, Krause A, Poustka AJ, Herwig R, Vingron M, Lehrach H (2003) New evidence for genome-wide duplications at the origin of vertebrates using an amphioxus gene set and completed animal genomes. Genome Res 13:1056–1066. doi: 10.1101/gr.874803 PubMedCrossRefGoogle Scholar
  104. Postlethwait JH, Yan YL, Gates MA, Horne S, Amores A, Brownlie A, Donovan A, Egan ES, Force A, Gong Z, Goutel C, Fritz A, Kelsh R, Knapik E, Liao E, Paw B, Ransom D, Singer A, Thomson M, Abduljabbar TS, Yelick P, Beier D, Joly JS, Larhammar D, Rosa F, Westerfield M, Zon LI, Johnson SL, Talbot WS (1998) Vertebrate genome evolution and the zebrafish gene map. Nat Genet 18:345–349. doi: 10.1038/ng0498-345 PubMedCrossRefGoogle Scholar
  105. Postlethwait JH, Woods IG, Ngo-Hazelett P, Yan YL, Kelly PD, Chu F, Huang H, Hill-Force A, Talbot WS (2000) Zebrafish comparative genomics and the origins of vertebrate chromosomes. Genome Res 10:1890–1902PubMedCrossRefGoogle Scholar
  106. Putnam NH, Butts T, Ferrier DE, Furlong RF, Hellsten U, Kawashima T, Robinson-Rechavi M, Shoguchi E, Terry A, Yu JK, Benito-Gutiérrez EL, Dubchak I, Garcia-Fernàndez J, Gibson-Brown JJ, Grigoriev IV, Horton AC, de Jong PJ, Jurka J, Kapitonov VV, Kohara Y, Kuroki Y, Lindquist E, Lucas S, Osoegawa K, Pennacchio LA, Salamov AA, Satou Y, Sauka-Spengler T, Schmutz J, Shin-I T, Toyoda A, Bronner-Fraser M, Fujiyama A, Holland LZ, Holland PW, Satoh N, Rokhsar DS (2008) The amphioxus genome and the evolution of the chordate karyotype. Nature 453:1064–1071. doi: 10.1038/nature06967 PubMedCrossRefGoogle Scholar
  107. Rastogi S, Liberles DA (2005) Subfunctionalization of duplicated genes as a transition state to neofunctionalization. BMC Evol Biol 5:28. doi: 10.1186/1471-2148-5-28 PubMedCrossRefGoogle Scholar
  108. Ravi V, Venkatesh B (2008) Rapidly evolving fish genomes and teleost diversity. Curr Opin Genet Dev 18:544–550. doi: 10.1016/j.gde.2008.11.001 PubMedCrossRefGoogle Scholar
  109. Robinson-Rechavi M, Marchand O, Escriva H, Laudet V (2001a) An ancestral whole-genome duplication may not have been responsible for the abundance of duplicated fish genes. Curr Biol 11:R458–R459. doi: 10.1016/S0960-9822(01)00280-9 PubMedCrossRefGoogle Scholar
  110. Robinson-Rechavi M, Marchand O, Escriva H, Bardet PL, Zelus D, Hughes S, Laudet V (2001b) Euteleost fish genomes are characterized by expansion of gene families. Genome Res 11:781–788PubMedCrossRefGoogle Scholar
  111. Robinson-Rechavi M, Boussau B, Laudet V (2004) Phylogenetic dating and characterization of gene duplications in vertebrates: the cartilaginous fish reference. Mol Biol Evol 21:580–586. doi: 10.1093/molbev/msh046 PubMedCrossRefGoogle Scholar
  112. Robinson-Rechavi M, Alibés A, Godzik A (2006) Contribution of electrostatic interactions, compactness and quaternary structure to protein thermostability: lessons from structural genomics of Thermotoga maritima. J Mol Biol 356:547–557. doi: 10.1016/j.jmb.2005.11.065 PubMedCrossRefGoogle Scholar
  113. Ruddle FH, Amemiya CT, Carr JL, Kim CB, Ledje C, Shashikant CS, Wagner GP (1999) Evolution of chordate hox gene clusters. Ann N Y Acad Sci 870:238–248PubMedCrossRefGoogle Scholar
  114. Salzburger W (2009) The interaction of sexually and naturally selected traits in the adaptive radiations of cichlid fishes. Mol Ecol 18:169–185. doi: 10.1111/j.1365-294X.2008.03981.x PubMedCrossRefGoogle Scholar
  115. San Mauro D, Vences M, Alcobendas M, Zardoya R, Meyer A (2005) Initial diversification of living amphibians predated the breakup of Pangea. Am Nat 165:590–599. doi: 10.1086/429523 PubMedCrossRefGoogle Scholar
  116. Sasaki T, Nishihara H, Hirakawa M, Fujimura K, Tanaka M, Kokubo N, Kimura-Yoshida C, Matsuo I, Sumiyama K, Saitou N, Shimogori T, Okada N (2008) Possible involvement of SINEs in mammalian-specific brain formation. Proc Natl Acad Sci U S A 105:4220–4225. doi: 10.1073/pnas.0709398105 PubMedCrossRefGoogle Scholar
  117. Sato Y, Nishida M (2007) Post-duplication charge evolution of phosphoglucose isomerases in teleost fishes through weak selection on many amino acid sites. BMC Evol Biol 7:204. doi: 10.1186/1471-2148-7-204 PubMedCrossRefGoogle Scholar
  118. Sato Y, Nishida M (2009) Electric charge divergence in proteins: insights into the evolution of their three-dimensional properties. Gene 441:3–11. doi: 10.1016/j.gene.2008.06.026 PubMedCrossRefGoogle Scholar
  119. Sato Y, Hashiguchi Y, Nishida M (2009a) Temporal pattern of loss/persistence of duplicate genes involved in signal transduction and metabolic pathways after teleost-specific genome duplication. BMC Evol Biol 9:127. doi: 10.1186/1471-2148-9-127 PubMedCrossRefGoogle Scholar
  120. Sato Y, Hashiguchi Y, Nishida M (2009b) Evolution of multiple phosphodiesterase isoforms in stickleback involved in cAMP signal transduction pathway. BMC Syst Biol 3:23. doi: 10.1186/1752-0509-3-23 PubMedCrossRefGoogle Scholar
  121. Sauro HM, Hucka M, Finney A, Wellock C, Bolouri H, Doyle J, Kitano H (2003) Next generation simulation tools: the systems biology workbench and BioSPICE integration. OMICS 7:355–372. doi: 10.1089/153623103322637670 PubMedCrossRefGoogle Scholar
  122. Schwartz FJ (1972) World literature to fish hybrids with an analysis by family, species, and hybrid. Publication no. 3, Gulf Coast Research Laboratory and Museum, Ocean Springs, MississippiGoogle Scholar
  123. Seehausen O, Terai Y, Magalhaes IS, Carleton KL, Mrosso HD, Miyagi R, van der Sluijs I, Schneider MV, Maan ME, Tachida H, Imai H, Okada N (2008) Speciation through sensory drive in cichlid fish. Nature 455:620–626. doi: 10.1038/nature07285 PubMedCrossRefGoogle Scholar
  124. Sémon M, Wolfe KH (2007a) Reciprocal gene loss between Tetraodon and zebrafish after whole genome duplication in their ancestor. Trends Genet 23:108–112. doi: 10.1016/j.tig.2007.01.003 PubMedCrossRefGoogle Scholar
  125. Sémon M, Wolfe KH (2007b) Rearrangement rate following the whole-genome duplication in teleosts. Mol Biol Evol 24:860–867. doi: 10.1093/molbev/msm003 PubMedCrossRefGoogle Scholar
  126. Setiamarga DH, Miya M, Yamanoue Y, Mabuchi K, Satoh TP, Inoue JG, Nishida M (2008) Interrelationships of Atherinomorpha (medakas, flyingfishes, killifishes, silversides, and their relatives): the first evidence based on whole mitogenome sequences. Mol Phylogenet Evol 49:598–605. doi: 10.1016/j.ympev.2008.08.008 PubMedCrossRefGoogle Scholar
  127. Setiamarga DH, Miya M, Yamanoue Y, Azuma Y, Inoue JG, Ishiguro NB, Mabuchi K, Nishida M (2009) Divergence time of the two regional medaka populations in Japan as a new time scale for comparative genomics of vertebrates. Biol Lett 5:812–816. doi: 10.1098/rsbl.2009.0419 PubMedCrossRefGoogle Scholar
  128. Sidow A (1996) Gen(om)e duplications in the evolution of early vertebrates. Curr Opin Genet Dev 6:715–722. doi: 10.1016/S0959-437X(96)80026-8 PubMedCrossRefGoogle Scholar
  129. Siegel N, Hoegg S, Salzburger W, Braasch I, Meyer A (2007) Comparative genomics of ParaHox clusters of teleost fishes: gene cluster breakup and the retention of gene sets following whole genome duplications. BMC Genomics 8:312. doi: 10.1186/1471-2164-8-312 PubMedCrossRefGoogle Scholar
  130. Spring J (1997) Vertebrate evolution by interspecific hybridisation—are we polyploid? FEBS Lett 40:2–8. doi: 10.1016/S0014-5793(96)01351-8 CrossRefGoogle Scholar
  131. Stadler PF, Fried C, Prohaska SJ, Bailey WJ, Misof BY, Ruddle FH, Wagner GP (2004) Evidence for independent Hox gene duplications in the hagfish lineage: a PCR-based gene inventory of Eptatretus stoutii. Mol Phylogenet Evol 32:686–694. doi: 10.1016/j.ympev.2004.03.015 PubMedCrossRefGoogle Scholar
  132. Steinke D, Hoegg S, Brinkmann H, Meyer A (2006) Three rounds (1R/2R/3R) of genome duplications and the evolution of the glycolytic pathway in vertebrates. BMC Biol 4:16. doi: 10.1186/1741-7007-4-16 PubMedCrossRefGoogle Scholar
  133. Takehana Y, Nagai N, Matsuda M, Tsuchiya K, Sakaizumi M (2003) Geographic variation and diversity of the cytochrome b gene in Japanese wild populations of medaka, Oryzias latipes. Zool Sci 20:1279–1291. doi: 10.2108/zsj.20.1279 CrossRefGoogle Scholar
  134. Taylor JS, Van de Peer Y, Meyer A (2001a) Genome duplication, divergent resolution and speciation. Trends Genet 17:299–301. doi: 10.1016/S0168-9525(01)02318-6 PubMedCrossRefGoogle Scholar
  135. Taylor JS, Van de Peer Y, Braasch I, Meyer A (2001b) Comparative genomics provides evidence for an ancient genome duplication event in fish. Philos Trans R Soc Lond B Biol Sci 356:1661–1679. doi: 10.1098/rstb.2001.0975 PubMedCrossRefGoogle Scholar
  136. Taylor JS, Braasch I, Frickey T, Meyer A, Van de Peer Y (2003) Genome duplication, a trait shared by 22000 species of ray-finned fish. Genome Res 13:382–390. doi: 10.1101/gr.640303 PubMedCrossRefGoogle Scholar
  137. Thorne JL, Kishino H, Painter IS (1998) Estimating the rate of evolution of the rate of molecular evolution. Mol Biol Evol 15:1647–1657PubMedGoogle Scholar
  138. Van der Hoeven F, Sordino P, Fraudeau N, Izpisúa-Belmonte JC, Duboule D (1996) Teleost HoxD and HoxA genes: comparison with tetrapods and functional evolution of the HoxD complex. Mech Dev 4:9–21. doi: 10.1016/0925-4773(95)00455-6 Google Scholar
  139. Van de Peer Y, Taylor JS, Braasch I, Meyer A (2001) The ghost of selection past: rates of evolution and functional divergence of anciently duplicated genes. J Mol Evol 53:436–446. doi: 10.1007/s002390010233 PubMedCrossRefGoogle Scholar
  140. Van de Peer Y, Taylor JS, Meyer A (2003) Are all fishes ancient polyploids? J Struct Funct Genomics 3:65–73. doi: 10.1023/A:1022652814749 PubMedCrossRefGoogle Scholar
  141. Van de Peer Y, Maere S, Meyer A (2009) The evolutionary significance of ancient genome duplications. Nat Rev Genet, in press. doi:  10.1038/nrg2600
  142. Vandepoele K, De Vos W, Taylor JS, Meyer A, Van de Peer Y (2004) Major events in the genome evolution of vertebrates: paranome age and size differ considerably between ray-finned fishes and land vertebrates. Proc Natl Acad Sci U S A 101:1638–1643. doi: 10.1073/pnas.0307968100 PubMedCrossRefGoogle Scholar
  143. Venkatesh B (2003) Evolution and diversity of fish genomes. Curr Opin Genet Dev 13:588–592. doi: 10.1016/j.gde.2003.09.001 PubMedCrossRefGoogle Scholar
  144. Venkatesh B, Kirkness EF, Loh YH, Halpern AL, Lee AP, Johnson J, Dandona N, Viswanathan LD, Tay A, Venter JC, Strausberg RL, Brenner S (2007) Survey sequencing and comparative analysis of the elephant shark (Callorhinchus milii) genome. PLoS Biol 5:e101. doi: 10.1371/journal.pbio.0050101 PubMedCrossRefGoogle Scholar
  145. Vogel G (1998) Doubled genes may explain fish diversity. Science 281:1119–1121. doi: 10.1126/science.281.5380.1119 PubMedCrossRefGoogle Scholar
  146. Volff JN (2005) Genome evolution and biodiversity in teleost fish. Heredity 94:280–294. doi: 10.1038/sj.hdy.6800635 PubMedCrossRefGoogle Scholar
  147. Werthand CR, Windham MD (1991) A model for divergent, allopatric speciation of polyploid pteridophytes resulting from silencing of duplicate-gene expression. Am Nat 137:515–526. doi: 10.1086/285180 CrossRefGoogle Scholar
  148. Wheeler DA, Srinivasan M, Egholm M, Shen Y, Chen L, McGuire A, He W, Chen YJ, Makhijani V, Roth GT, Gomes X, Tartaro K, Niazi F, Turcotte CL, Irzyk GP, Lupski JR, Chinault C, Song XZ, Liu Y, Yuan Y, Nazareth L, Qin X, Muzny DM, Margulies M, Weinstock GM, Gibbs RA, Rothberg JM (2008) The complete genome of an individual by massively parallel DNA sequencing. Nature 452:872–876. doi: 10.1038/nature06884 PubMedCrossRefGoogle Scholar
  149. Wolfe KH (2001) Yesterday’s polyploids and the mystery of diploidization. Nat Rev Genet 2:333–341. doi: 10.1038/35072009 PubMedCrossRefGoogle Scholar
  150. Yamanoue Y, Miya M, Inoue JG, Matsuura K, Nishida M (2006) The mitochondrial genome of spotted green pufferfish Tetraodon nigroviridis (Teleostei: Tetraodontiformes) and divergence time estimation among model organisms in fishes. Genes Genet Syst 8:29–39. doi: 10.1266/ggs.81.29 CrossRefGoogle Scholar
  151. Yamanoue Y, Miya M, Matsuura K, Katoh M, Sakai H, Nishida M (2008) A new perspective on phylogeny and evolution of tetraodontiform fishes (Pisces: Acanthopterygii) based on whole mitochondrial genome sequences: Basal ecological diversification? BMC Evol Biol 8:212. doi: 10.1186/1471-2148-8-212 PubMedCrossRefGoogle Scholar
  152. Yamanoue Y, Miya M, Matsuura K, Miyazawa S, Tsukamoto N, Doi H, Takahashi H, Mabuchi K, Nishida M, Sakai H (2009) Explosive speciation of Takifugu: another use of fugu as a model system for evolutionary biology. Mol Biol Evol 26:623–629. doi: 10.1093/molbev/msn283 PubMedCrossRefGoogle Scholar
  153. Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13:555–556. doi: 10.1093/bioinformatics/13.5.555 PubMedGoogle Scholar
  154. Yu WP, Yew K, Rajasegaran V, Venkatesh B (2007) Sequencing and comparative analysis of fugu protocadherin clusters reveal diversity of protocadherin genes among teleosts. BMC Evol Biol 7:49. doi: 10.1186/1471-2148-7-49 PubMedCrossRefGoogle Scholar
  155. Zhang J (2003) Evolution by gene duplication: an update. Trends Ecol Evol 18:292–298. doi: 10.1016/S0169-5347(03)00033-8 CrossRefGoogle Scholar
  156. Zhou R, Cheng H, Tiersch TR (2001) Differential genome duplication and fish diversity. Rev Fish Biol Fish 11:331–337. doi: 10.1023/A:1021395506705 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Division of Molecular Marine Biology, Ocean Research InstituteThe University of TokyoTokyoJapan
  2. 2.Division of Population GeneticsNational Institute of GeneticsMishimaJapan

Personalised recommendations