The taxonomy and phylogeny of the cyprinid genus Opsariichthys Bleeker (Teleostei: Cyprinidae) from Taiwan, with description of a new species

  • I-Shiung ChenEmail author
  • Jui-Hsien Wu
  • Shih-Pin Huang


The morphological and mitochondrial genetic differentiation in the cyprinid genus, Opsariichthys Bleeker (Nederlandsch Tijdschrift voor de Dierkunde 1:187–218, 1863) have been surveyed in Taiwan. Among them, there are three valid species can be recognized in Taiwan including Opsariichthys pachycephalus Günther (1868) distributed in northern and western Taiwan, Opsariichthys evolans (Jordan and Evermann Proc US Nat Mus 25:315–368, 1902) in northern Taiwan and an unnamed species from southern Taiwan described herein as Opsariichthys kaopingensis Chen and Wu, new species which can be well distinguished from the related O. pachycaphalus by their body proportions, scale counts, and specific coloration patterns. We utilized mitochondrial complete D-loop sequence data to infer phylogenetic relationships within a subset of related genera of opsariichthines, and to examine evidence for genetic differentiation in these two sibling species formerly assigned to “Zaccopachycephalus and their genetic relationship with other congeneric species around nearby regions. The clade of O. pachycephalus and O. kaopingensis in genetically were recovered as more closely related to Opsariichthys uncirostris (Temminck and Schlegel 1846) species complex including both O. uncirostris and O. bidens Günther (1868) from Japan and mainland China than to typical Zacco from Japan. This molecular phylogenetic insight strongly supports the assignment for both so-called “Zaccopachycephalus and this new species described herein as the typical monophyletic members of Opsariichthys and the type species of Zacco as Zacco platypus (Temminck and Schlegel 1846) from Japan is sister clade for all species groups in Opsariichthys. Opsariichthys pachycephalus and O. kaopingensis were strongly differentiated by large mitogenetic distances and phylogenetic support from distance and discrete method and Bayesian inference based on complete mtDNA D-loop sequences, with an average mitogenetic divergence of 3.3%, which may suggest that the separation of the two species happened much earlier than the last glacial period. Opsariichthys evolans seems to share the close genetic relationship with O. acutipinnis (Bleeker Nederlandsch Tijdschrift voor de Dierkunde 1:187–218, 1863) from the Yangtsi River basin.


Opsariichthys New species Cyprinidae Mitochondrial DNA Control region Molecular phylogeny Taiwan 



The first author is very grateful for the grant support from the National Science Council, Taipei, Taiwan in 2003–2005, and from the Agriculture Council, Taiwan in 2001 to 2003. He also extends his thanks to both K.T. Shao and H.C. Ho for kindly providing the very important information and photo for the type specimens of Opsariichthys pachycephalus from BMNH; M.J. Grygier for his kindly help for collecting Japanese specimens and L.S. Fang for his kindly support for of this research; N.H. Jang-Liaw for providing some Chinese cyprinids; Y.C. Chang for his kindly providing his excellent, alive photos of cyprinid fishes; and P.H. Liu for her assistance on part of lab. sequencing work for these cyprinid fishes.


  1. Ashiwa H, Hosoya K (1998) Osteology of Zacco pachycephalus, sensu Jordan & Evermann (1903), with special reference to its systematic position. Environ Biol Fish 52:163–171CrossRefGoogle Scholar
  2. Banarescu P (1968) Revision of the genera Zacco and Opsariichthys (Pisces, Cyprinidae). Vest Cs Zool Spol 32:305–311Google Scholar
  3. Banarescu P, Nalbant TT (1966) Notes on the genus Gobiobotia (Pisces, Cyprinidae) with description of three new species. Annot Zool Bot Bratislava 27:1–16Google Scholar
  4. Banarescu P, Nalbant TT (1968) Some new Chinese minnows (Pisces, Cypriniformes). Proc Biol Soc Wash 81:335–346Google Scholar
  5. Berrebi P, Boissin E, Fang F, Cattaneo-Berrebi G (2005) Intron polymorphism (EPIC-PCR) reveals phylogeographic structure of Zacco platypus in China: a possible target for aquaculture development. Heredity 94:589–598CrossRefPubMedGoogle Scholar
  6. Berrebi P, Retif X, Fang F, Zhang CG (2006) Population structure and systematics of Opsariichthys bidens (Osteichthyes: Cyprinidae) in southeast China using a new molecular marker: the introns (EPIC-PCR). Biol J Linn Soc 87:155–166CrossRefGoogle Scholar
  7. Bleeker P (1863) Systema Cyprinoideorum revisum. Nederlandsch Tijdschrift voor de Dierkunde 1:187–218Google Scholar
  8. Bleeker P (1871) Mémoire sur les cyprinoïdes de Chine. Verh K Akad Wet (Amsterdam) 12:1–91Google Scholar
  9. Boggs SJ, Wang WC, Lewis FS, Chen JC (1979) Sediment properties and water characteristics of the Taiwan shelf and slope. Acta Oceanograph Taiwan 10:10–49Google Scholar
  10. Chen Y (1982) A revision of opsariichthine cyprinid fishes. Oceangr Limnol Sin 13:293–299 (in Chinese with English summary)Google Scholar
  11. Chen Y (ed) (1998) Fauna Sinica. Osteichthys. Cypriniformes II. Science Press, Beijing (in Chinese)Google Scholar
  12. Chen JTF, Yu MJ (1986) A synopisis of the vertebrates of Taiwan, 3rd edn. Commercial Books Press, Taipei (in Chinese)Google Scholar
  13. Chen I-S, Fang LS (1999) The freshwater and estuarine fishes of Taiwan. Nat Mus Mar Biol Aquar, Pingtung (in Chinese)Google Scholar
  14. Chen I-S, Fang LS (2000) Redescription of the types of Ischikauia macrolepis, Regan, 1908, an extinct cyprinid from Taiwan and replacement in Rasborinus Oshima, 1920. Zool Stud 39:13–17Google Scholar
  15. Chen I-S, Chang YC (2005) A photographic guide to the island-water fishes of Taiwan. The Sueichan Press, KeelungGoogle Scholar
  16. Chen I-S, Chang YC (2007) Taxonomic revision and mitochondrial sequence evolution of the cyprinid genus Squalidus (Teleostei: Cyprinidae) in Taiwan with description of a new species. Raffl Bull Zool S14:69–76Google Scholar
  17. Chen I-S, Hsu CH, Hui CF, Shao KT, Miller PJ, Fang LS (1998) Sequence length and variation in the mitochondrial control region of two freshwater fishes belonging to Rhinogobius (Teleostei: Gobiidae). J Fish Biol 53:179–191Google Scholar
  18. Chen I-S, Han CC, Fang LS (2002a) A new balitorid fish, Sinogastromyzon nantaiensis, from southern Taiwan. Ichthyol Explor Freshw 13:297–200Google Scholar
  19. Chen I-S, Miller PJ, Wu HL, Fang LS (2002b) Taxonomy and mitochondrial evolution in non-diadromous species of Rhinogobius (Teleostei: Gobiidae) of Hainan island, southern China. Mar Freshwater Res 53:259–273CrossRefGoogle Scholar
  20. Chen I-S, Huang SP, Jang-Liaw NH, Shen CN, Wu JH (2008a) Molecular evidence for genetic differentiation of the Opsariichthys bidens complex (Teleostei: Cyprinidae) in Southern China around South China Sea and the validity of Opsariicthys hainanensis. Raffl Bull Zool Suppl 19:215–223Google Scholar
  21. Chen I-S, Wu JH, Hsu CH (2008b) The taxonomy and phylogeny of the cyprinid genus, Candidia (Teleostei: Cyprinidae) from Taiwan, with description of a new species and comments on a new genus. Raffl Bull Zool Suppl 19:203–214Google Scholar
  22. Donaldson KA, Wilson RR (1999) Amphi-panamic geminates of snook (Percoidei: Cetropomidae) provide a calibration of the divergence rate in the mitochondrial DNA control region of fishes. Mol Phylog Evol 13:208–213CrossRefGoogle Scholar
  23. Günther A (1868) Catalogue of the fishes in British Museum, Vol 7. British Museum, LondonGoogle Scholar
  24. Hall TA (2001) Bioedit: a user-friendly biological sequence alignment editor and analysis, version 5.09. Dept Microbiol, N Carolina State Univ, RaleighGoogle Scholar
  25. Hosoya K, Ashiwa H, Wayanabe M, Mizunguchi K, Okazaki T (2002) Zacco sieboldii, a species distinct from Zacco temminckii. Ichthyol Res 50:1–8CrossRefGoogle Scholar
  26. Howes GJ (1980) The anatomy, phylogeny and classification of the bariline cyprinid fishes. Bull Br Mus Nat Hist (Zool) 37:129–198Google Scholar
  27. Howes GJ (1983) Additional notes on bariline cyprinid fishes. Bull Br Mus Nat Hist (Zool) 45:95–101Google Scholar
  28. Jordan DS, Evermann BW (1902) Note on a collection of fishes from the island of Formosa. Proc US Nat Mus 25:315–368Google Scholar
  29. Jordan DS, Richardson RE (1909) A catalog of the fishes of the island of Formosa, or Taiwan, based on the collections of Dr Hans Sauter. Mem Carneg Mus 4:159–204Google Scholar
  30. Jordan DS, Hubb CL (1925) Record of fishes obtained by David Starr Jordan in Japan, 1922. Mem Carn Mus 10:93–346Google Scholar
  31. Kumar S, Tamura K, Nei M (2004) MEGA 3: Intergrated software for molecular evolutionary genetics analysis and sequence alignment. Pennsyl State Univ, PhiladelphiaGoogle Scholar
  32. Ma GC, Watanabe K, Tsao HS, Yu HT (2006) Mitochondrial phylogeny reveals the artificial introduction of the pale chub Zacco platypus (Cyprinidae) in Taiwan. Ichthyol Res 53:323–329CrossRefGoogle Scholar
  33. Nichols JT, Pope CH (1927) The fishes of Hainan. Bull Amer Mus Nat Hist 54:321–394Google Scholar
  34. Nguyen TT (1987) Genus Opsariichthys Bleeker, 1863 Leuciscini-Cyprinidae of the Lam River Basin (Prov. Nghe-Tinh). Tap Chi Sinh Hoc (J Biol) 9:32–36 In Vietnamese, English summaryGoogle Scholar
  35. Nguyen VH, Nguyen HD (2000) Two new species of the fish genus of Opsariichthys from Vietnam. Tap Chi Sinh Hoc (J Biol) 22:12–16 In Vietnamese, English summaryGoogle Scholar
  36. Nylander JAA (2005) MrModeltest V 2.2. Evol biol centre. Uppsala Univ, UppsalaGoogle Scholar
  37. Okazaki T, Jeon SR, Kitagawa T (2002) Genetic differentiation of piscivorous chub (genus Opsariichthys) in Japan, Korea and Russia. Zool Sci 19:601–610CrossRefPubMedGoogle Scholar
  38. Oshima M (1919) Contribution to the study of the freshwater fishes of the island of Formosa. Ann Carneg Mus 13:169–328Google Scholar
  39. Oshima M (1923) Studies on the distribution of the freshwater fishes of Taiwan and the geographical relationship of the Taiwan and adjacent area. Zool Mag 35:1–49Google Scholar
  40. Perdices A, Cunha C, Coelho MM (2004) Phylogenetic structure of Zacco platypus (Teleostei: Cyprinidae) populations on the upper and middle Chang Jiang (=Yangtze) drainage inferred from cytochrome b sequences. Mol Phylogenet Evol 31:192–203CrossRefPubMedGoogle Scholar
  41. Perdices A, Sayada D, Coelho MM (2005) Mitochondrial diversity of Opsariichthys bidens (Teleostei: Cyprinidae) in three Chinese drainages. Mol Phylogenet Evol 37:920–927CrossRefPubMedGoogle Scholar
  42. Perdices A, Coelho MM (2006) Comparative phylogeography of Zacco platypus and Opsariichthys bidens (Teleostei, Cyprinidae) in China based on cytochrome b sequences. J Zool System Evol Res 44:330–338CrossRefGoogle Scholar
  43. Regan CT (1908) Description of new species from Lake Candidia, Formosa, collected by Dr. A. Moltrecht. Annal Mag Nat Hist (Ser. 8) 2:358–360Google Scholar
  44. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinform 19:1572–1574CrossRefGoogle Scholar
  45. Sambrook J, Fritsch EF, Manitatais T (1989) Molecular cloning. A laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring HarborGoogle Scholar
  46. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Nat Acad Sci USA 74:5463–5467CrossRefPubMedGoogle Scholar
  47. Sauvage HE (1874) Notes sur les poissons des eaux douces de la Chine. Annal Sci Nat Paris (Zool.) (Sér. 6) 1(5):1–18Google Scholar
  48. Shen SC (ed) (1993) Fishes of Taiwan. Natl Taiwan Univ Press, Taipei (in Chinese)Google Scholar
  49. Stepien CA, Faber JE (1998) Population genetic structure, phylogeography and spawning philopatry in walleye (Stizostedion vitreum) from mitochondrial DNA control region sequences. Mol Ecol 7:1757–1769CrossRefPubMedGoogle Scholar
  50. Swofford DL (2003) PAUP*: phylogenetic analysis using parsimony (* and other methods). Ver 4. Sinauer Associates Press, SunderlandGoogle Scholar
  51. Takahashi H, Goto A (2001) Evolution of east Asian ninespine sticklebacks as shown by mitochondrial DNA control region sequences. Mol Phylog Evol 21:135–155CrossRefGoogle Scholar
  52. Temminck GJ, Schlegel H (1846) Pisces in Siebold’s Fauna Japonica. Lugduni Batavorum, LeidenGoogle Scholar
  53. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL X: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefPubMedGoogle Scholar
  54. Tzeng CS (1986) The freshwater fishes of Taiwan. Taiwan Educ Inst Press, Taichung (in Chinese)Google Scholar
  55. Wang HY, Tsai MP, Yu MJ, Lee SC (1999) Influence of glaciation patterns of the endemic minnow, Zacco pachycephalus, in Taiwan. Mol Ecol 8:1879–1888CrossRefPubMedGoogle Scholar
  56. Wang HY, Wang CF, Du SY, Lee SC (2007) New insights on molecular systematics of opsariichthines based on cytochrome b sequencing. J Fish Biol 71:18–32CrossRefGoogle Scholar
  57. Wu JH, Hsu CH, Fang LS, Chen I-S (2007) The molecular phylogeography of Candidia barbatus species complex (Teleostei: Cyprinidae) from Taiwan. Raffl Bull Zool Suppl 14:61–67Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Institute of Marine Biology and Department of Life ScienceNational Taiwan Ocean UniversityKeelungRepublic of China
  2. 2.Institute of Marine ResourcesNational Sun Yst-sen UniversityKaohsiungRepublic of China
  3. 3.Dongsha Marine National Park HeadquartersKaohsiung CityRepublic of China

Personalised recommendations