Effects of cyanobacterial toxin microcystin-LR on the transcription levels of immune-related genes in grass carp Ctenopharyngodon idella

  • Lili Wei
  • Baojian Sun
  • MingXian Chang
  • Yi Liu
  • Pin Nie


Recent studies in mammals have revealed that the cyanobacterial toxin MC-LR suppresses immune functions. Nevertheless, immunotoxic effects of microcystins have been little studied in fish. In this paper, we present the profiles of the immune modulation of MC-LR in grass carp, and quantitative real-time PCR methodology was developed for the measurement of relative transcription changes of six immune-related genes in the spleen and head kidney of the grass carp Ctenopharyngodon idella, which were intraperitoneally injected with 50 μg MC-LR·kg-1 body weight in a three-week period. This study was focused exclusively on gene transcription level changes at different time points after MC-LR exposure, so, only one dose was given. The investigated genes were interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), type I interferon (Type I IFN), peptidoglycan recognition protein-L (PGRP-L), immunoglobulin M (IgM) and major histocompatibility complex class I (MHC-I) genes. The results demonstrated that the transcription levels of the TNF-α, type I IFN, and PGRP-L genes in the spleen and head kidney were significantly low at all time points, and those of IL-1β were significantly low in the head kidney at different time points. In addition, IgM and MHC-I transcription levels were only significantly low in the spleen and head kidney at 21 d postinjection. The changes in the transcription levels of immune-related genes induced by MC-LR confirmed its effect on inhibiting immune function at the transcription level.


Grass carp Immune-relate genes Microcystin-LR Immunotoxicity Quantitative real-time PCR 



This study was supported by the National Natural Science Foundation of China (project no. 20577065).


  1. Boaru DA, Dragos N, Schirmer K (2006) Microcystin-LR induced cellular effects in mammalian and fish primary hepatocyte cultures and cell lines: a comparative study. Toxicology 218:134–148. doi:10.1016/j.tox.2005.10.005 PubMedCrossRefGoogle Scholar
  2. Chang MX, Nie P, Wei LL (2007) Short and long peptidoglycan recognition proteins (PGRPs) in zebrafish, with findings of multiple PGRP homologs in teleost fish. Mol Immunol 44:3005–3023. doi:10.1016/j.molimm.2006.12.029 PubMedCrossRefGoogle Scholar
  3. Chen T, Zhao XY, Liu Y, Shi Q, Hua ZC, Shen PP (2004) Analysis of immunomodulating nitric oxide, iNOS and cytokines mRNA in mouse macrophages induced by microcystin-LR. Toxicology 197:67–77. doi:10.1016/j.tox.2003.12.013 PubMedCrossRefGoogle Scholar
  4. Dinarello CA (1997) Interleukin-1. Cytokine Growth Factor Rev 8:253–265. doi:10.1016/S1359-6101(97)00023-3 PubMedCrossRefGoogle Scholar
  5. Dinarello CA (2003) Interleukin-1 family (IL-1F1, F2). In: Thomson A, Lotze M (eds) The Cytokine Handbook. Elsevier Science Ltd, London, pp 643–468CrossRefGoogle Scholar
  6. Dziarski R (2004) Peptidoglycan recognition proteins (PGRPs). Mol Immunol 40:877–886. doi:10.1016/j.molimm.2003.10.011 PubMedCrossRefGoogle Scholar
  7. Ellis AE (2001) Innate host defense mechanisms of fish against viruses and bacteria. Dev Comp Immunol 25:827–839. doi:10.1016/S0145-305X(01)00038-6 PubMedCrossRefGoogle Scholar
  8. Fischer WJ, Hitzfeld BC, Tencalla F, Eriksson JE, Mikhailov A, Dietrich DR (2000) Microcystin-LR toxicodynamics, induced pathology, and immunhistochemical location in livers of blue-green algae exposed rainbow trout (Oncorhynchus mykiss). Toxicol Sci 54:365–372. doi:10.1093/toxsci/54.2.365 PubMedCrossRefGoogle Scholar
  9. Fujiki H, Suganuma M (1994) Tumor necrosis factor-alpha, a new tumor promoter, engendered by biochemical studies of okadaic acid. J Biochem 115:1–5PubMedGoogle Scholar
  10. Hansen JD (1997) Characterization of rainbow trout terminal deoxynucleotidyl transferase structure and expression. TdT and RAG1 co-expression define the trout primary lymphoid tissues. Immunogenetics 46:367–375. doi:10.1007/s002510050290 PubMedCrossRefGoogle Scholar
  11. Hermansky ST, Markin RS, Fowler EH, Stohs SJ (1993) Hepatic ultrastructural changes induced by the toxin microcystin-LR (MC-LR) in mice. J Environ Pathol Toxicol Oncol 12:101–106PubMedGoogle Scholar
  12. Hermansky ST, Casey PJ, Stohs SJ (1990) Cyclosporin-A, a chemoprotectant against microcystin-LR toxicity. Toxicol Lett 54:279–285. doi:10.1016/0378-4274(90)90195-R PubMedCrossRefGoogle Scholar
  13. Hermansky ST, Stohs SJ, Eldeen ZM, Roche VF, Mereish KA (1991) Evaluation of potential chemoprotectants against microcystin-LR hepatotoxicity in mice. J Appl Toxicol 11:65–73. doi:10.1002/jat.2550110112 PubMedCrossRefGoogle Scholar
  14. Hernández M, Macia M, Padilla C, Del Campo FF (2000) Modulation of human polymorphonuclear leukocyte adherence by cyanopeptide toxins. Environ Res 84:64–68. doi:10.1006/enrs.2000.4080 PubMedCrossRefGoogle Scholar
  15. Hooser SB, Kuhlenschmidt MS, Dahlem AM, Beasley W, Carmichael W, Haschek WM (1991) Uptake and subcellular localization of tritiated dihydro-microcystin-LR in rat liver. Toxicon 29:589–601. doi:10.1016/0041-0101(91)90053-T PubMedCrossRefGoogle Scholar
  16. Hudder A, Song W, O’Shea KE, Walsh PJ (2007) Toxicogenomic evaluation of microcystin-LR treated with ultrasonic irradiation. Toxicol Appl Pharmacol 220:357–364. doi:10.1016/j.taap.2007.02.004 PubMedCrossRefGoogle Scholar
  17. Imanishi S, Harada K (2004) Proteomics approach on microcystin binding proteins in mouse liver for investigation of microcystin toxicity. Toxicon 43:651–659. doi:10.1016/j.toxicon.2004.02.026 PubMedCrossRefGoogle Scholar
  18. Jones S (2001) The occurrence and mechanisms of innate immunity against parasites in fish. Dev Comp Immunol 25:841–852. doi:10.1016/S0145-305X(01)00039-8 PubMedCrossRefGoogle Scholar
  19. Kang D, Liu G, Lundstrom A, Gelius E, Steiner H (1998) A peptidoglycan recognition protein in innate immunity conserved from insects to mammals. Proc Natl Acad Sci USA 95:10078–10082. doi:10.1073/pnas.95.17.10078 PubMedCrossRefGoogle Scholar
  20. Khan SA, Ghosh S, Wickstrom M, Miller LA, Hess R, Haschek WM, Beasley VR (1995) Comparative pathology of microcystin-LR in cultured hepatocytes, fibroblasts, and renal epithelial cells. Nat Toxins 3:119–128. doi:10.1002/nt.2620030302 PubMedCrossRefGoogle Scholar
  21. Lankoff A, Carmichael WW, Grasman KA, Yuan M (2004) The uptake kinetics and immunotoxic effects of microcystin-LR in human and chicken peripheral blood lymphocytes in vitro. Toxicology 204:23–40. doi:10.1016/j.tox.2004.05.016 PubMedCrossRefGoogle Scholar
  22. Liew FY (2003) The role of innate cytokines in inflammatory response. Immunol Lett 85:131–134. doi:10.1016/S0165-2478(02)00238-9 PubMedCrossRefGoogle Scholar
  23. Luk JM, Lai W, Tam P, Koo MWL (2000) Suppression of cytokine production and cell adhesion molecule expression in human monocytic cell line THP-1 by Tripterygium wilfordii polysaccharide moiety. Life Sci 67:155–163. doi:10.1016/S0024-3205(00)00611-1 PubMedCrossRefGoogle Scholar
  24. Mackintosh C, Beattie KA, Klumpp S, Cohen P, Codd GA (1990) Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEBS Lett 264:187–192. doi:10.1016/0014-5793(90)80245-E PubMedCrossRefGoogle Scholar
  25. Malbrouck C, Trausch G, Devos P, Kestemont P (2003) Hepatic accumulation and effects of microcytin-LR on juvenile goldfish Carassius auratus L. Comp Biochem Physiol C Comp Pharmacol 135:39–48Google Scholar
  26. Mankiewicz J, Walter Z, Tarczynska M, Zalewski M, Fladmark KE, Doskeland SO (2000) Apoptotic effect of cyanobacterial blooms collected from Polish water reservoirs. Int J Occup Med Environ Health 13:335–344PubMedGoogle Scholar
  27. Matsushima R, Yoshizawa S, Watanabe MF, Harada K, Furusawa M, Carmichael WW, Fujiki H (1990) In vitro and in vivo effects of protein phosphatase inhibitors, microcystins and nodularin, on mouse skin and fibroblasts. Biochem Biophys Res Commun 171:867–874. doi:10.1016/0006-291X(90)91226-I PubMedCrossRefGoogle Scholar
  28. McBeath AJA, Snow M, Secombes CJ, Ellis AE, Collet B (2007) Expression kinetics of interferon and interferon-induced genes in Atlantic salmon (Salmo salar) following infection with infectious pancreatic necrosis virus and infectious salmon anaemia virus. Fish Shellfish Immunol 22:230–241. doi:10.1016/j.fsi.2006.05.004 PubMedCrossRefGoogle Scholar
  29. Mereish KA, Solow R (1990) Effect of antihepatotoxic agents against microcystin-LR toxicity in cultured rat hepatocytes. Pharm Res 7:256–259. doi:10.1023/A:1015822028414 PubMedCrossRefGoogle Scholar
  30. Mirura GA, Robinson NA, Geisbert TW, Bostian KA, White JD, Pace JG (1989) Comparison of in vivo and in vitro toxic effects of microcystin-LR in fasted rats. Toxicon 27:1229–1240. doi:10.1016/0041-0101(89)90031-7 CrossRefGoogle Scholar
  31. Nakano Y, Shirai M, Mori N, Nakano M (1991) Neutralization of microcystin-LR shock in mice by tumor necrosis factor alpha anti-serum. Appl Environ Microbiol 57:327–330PubMedGoogle Scholar
  32. Pace JG, Robinson NA, Miura GA, Matson CF, Geisbert TW, White JD (1991) Toxicity and kinetics of (3H) microcystin-LR in isolated perfused rat livers. Toxicol Appl Pharmacol 107:391–401. doi:10.1016/0041-008X(91)90303-V PubMedCrossRefGoogle Scholar
  33. Pahan K, Sheikh FG, Namboodiri AMS, Singh I (1998) Inhibitors of protein phosphatase 1 and 2A differentially regulate the expression of inducible nitric-oxide synthase in rat astrocytes and macrophages. J Biol Chem 273:12219–12226. doi:10.1074/jbc.273.20.12219 PubMedCrossRefGoogle Scholar
  34. Parkin J, Cohen BC (2001) An overview of the immune system. The Lancet 357:1777–1789CrossRefGoogle Scholar
  35. Purcell MK, Kurath G, Garver K, Herwig RP, Winton JR (2004) Quantitative expression profiling of immune response genes in rainbow trout following infectious haematopoietic necrosis virus (IHNV) infection or DNA vaccination. Fish Shellfish Immunol 17:447–462. doi:10.1016/j.fsi.2004.04.017 PubMedCrossRefGoogle Scholar
  36. Râbergh CMI, Bylund G, Eriksson JE (1991) Histopathological effects of MC-LR, a cyclic peptide toxin from the cyanobacterium (blue-green alga) Microcystis aeruginosa, on common carp (Cyprinuscarpio L.). Aquat Toxicol 20:131–146. doi:10.1016/0166-445X(91)90012-X CrossRefGoogle Scholar
  37. Rao PVL, Bhattacharya R, Pant SC, Bhaskar AS (1995) Toxicity evaluation of in vitro cultures of freshwater cyanobacterium Microcystis aeruginosa: I. Hepatotoxic and histopathological effects in rats. Biomed Environ Sci 8:254–264Google Scholar
  38. Rao PVL, Gupta N, Jayaraja R, Bhaskara ASB, Jatavb PC (2005) Age-dependent effects on biochemical variables and toxicity induced by cyclic peptide toxin microcystin-LR in mice. Comp Biochem Physiol C Comp Pharmacol 140:11–19. doi:10.1016/j.cca.2004.11.008 CrossRefGoogle Scholar
  39. Repavich W, Sonzogni WC, Standridge JH, Wedepohl RE, Meisner LE (1990) Cyanobacteria (blue green algae) in Wisconsin waters: acute and chronic toxicity. Water Res 24:225–231. doi:10.1016/0043-1354(90)90107-H CrossRefGoogle Scholar
  40. Robertsen B (2006) The interferon system of teleost fish. Fish Shellfish Immunol 20:172–191. doi:10.1016/j.fsi.2005.01.010 PubMedCrossRefGoogle Scholar
  41. Rocha MF, Sidirm JJ, Soares AM, Jimenez GC, Guerrant RL, Ribeiro RA, Lima AA (2000) Supernatants from macrophages stimulated with microcystin-LR induce electrogenic intestinal response in rabbit ileum. Pharmacol Toxicol 87:46–51. doi:10.1111/j.0901-9928.2000.870108.x PubMedCrossRefGoogle Scholar
  42. Secombes CJ (2001) Phylogeny of cytokines: molecular cloning and expression analysis of sea bass Dicentrarchus labrax interleukin-1γ. Fish Shellfish Immunol 11:711–726. doi:10.1006/fsim.2001.0347 PubMedCrossRefGoogle Scholar
  43. Stoner RD, Adams WH, Slatkin DN, Siegelman HW (1990) Cyclosporine-A inhibition of microcystin toxins. Toxicon 28:569–273. doi:10.1016/0041-0101(90)90301-M PubMedCrossRefGoogle Scholar
  44. Sueoka E, Sueoka N, Okabe S, Kozu T, Komori A, Ohta T, Suganuma M, Kim SJ, Lim IK, Fujiki H (1997) Expression of the tumor necrosis factor alpha gene and early response genes by nodularin, a liver tumor promoter, in primary cultured rat hepatocytes. J Cancer Res Clin Oncol 123:413–419PubMedGoogle Scholar
  45. Werner T, Liu G, Kang D, Ekengren S, Steiner H, Hultmark D (2000) A family of peptidoglycan recognition proteins in the fruit fly Drosophila melanogaster. Proc Natl Acad Sci USA 97:13772–13777. doi:10.1073/pnas.97.25.13772 PubMedCrossRefGoogle Scholar
  46. Wickstrom M, Haschek W, Henningsen G, Miller LA, Wyman J, Beasley V (1996) Sequential ultrastructural and biochemical changes induced by microcystin-LR in isolated perfused rat livers. Nat Toxins 4:195–205PubMedGoogle Scholar
  47. Wickstrom ML, Khan SA, Haschek WM, Wyman JF, Eriksson JE, Schaeffer DJ, Beasley VR (1995) Alterations in microtubules, intermediate filaments, and microfilaments induced by microcystin-LR in cultured cells. Toxicol Pathol 23:326–337. doi:10.1177/019262339502300309 PubMedCrossRefGoogle Scholar
  48. Wilson M, Bengten E, Miller NW, Clem LW, Du Pasquier L, Warr GW (1997) A novel chimeric Ig heavy chain from a teleost fish shares similarities to IgD. Proc Natl Acad Sci USA 94:4593–4597. doi:10.1073/pnas.94.9.4593 PubMedCrossRefGoogle Scholar
  49. Yea SS, Kim HM, Oh HM, Paik KM, Yang KH (2001) Microcystin-induced down-regulation of lymphocyte function through reduced IL-2mRNA stability. Toxicol Lett 122:21–31. doi:10.1016/S0378-4274(01)00339-3 PubMedCrossRefGoogle Scholar
  50. Zapata AG, Chiba A, Varas A (1996) Cells and tissues of the immune system of fish. In: Iwama G, Nakanishi T (eds) The fish immune system. Academic, San Deigo, pp 1–53Google Scholar
  51. Zwollo P, Cole S, Bromage E, Kaattari S (2005) B cell heterogeneity in the teleost kidney: evidence for a maturation gradient from anterior toposterior kidney. J Immunol 174:6608–6616PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Lili Wei
    • 1
    • 2
  • Baojian Sun
    • 1
  • MingXian Chang
    • 1
  • Yi Liu
    • 1
  • Pin Nie
    • 1
  1. 1.State Key Laboratory of Freshwater Ecology and Biotechnology, and Laboratory of Fish Diseases, Institute of HydrobiologyChinese Academy of SciencesWuhanChina
  2. 2.College of Animal Science and TechnologyJiangxi Agricultural UniversityNanchangChina

Personalised recommendations