Advertisement

Environmental Biology of Fishes

, Volume 84, Issue 1, pp 129–140 | Cite as

Maximum tag to body size ratios for an endangered coho salmon (O. kisutch) stock based on physiology and performance

  • Cedar M. ChittendenEmail author
  • Kevin G. Butterworth
  • K. Fiona Cubitt
  • Melinda C. Jacobs
  • Adrian Ladouceur
  • David W. Welch
  • R. Scott McKinley
Article

Abstract

Many coho salmon stocks (Oncorhynchus kisutch) have been in decline during the past three decades. Canada’s most endangered salmon stock, the Thompson River coho salmon, is being studied extensively as managers attempt to reverse these population declines. Investigators are using acoustic telemetry to track the migratory behaviour and survival of the Thompson River (and other) coho salmon stocks. Coho salmon pre-smolts are relatively small compared with salmonid species that are typically studied using acoustic telemetry; therefore the identification of the appropriate sizes of fish and tags to use is critical. This study tested the effects of surgically implanting the three smallest sizes of acoustic tags currently available on the growth, survival, tag retention, swimming performance and physical condition of coho salmon pre-smolts for 300 days post-surgery. Maximum tag size to body size ratios ranged from 15–17% by fork length and 7–8% by mass for the three tag sizes (11 cm fork length for a 6 × 19 mm tag, 12.5 cm for a 7 × 19 mm tag, and 14 cm for a 9 × 21 mm tag). Based on our results, it is unlikely that coho salmon pre-smolts implanted with acoustic transmitters following these size guidelines would have poor survival in studies of freshwater migratory behaviour as a result of the surgery or the tag.

Keywords

Pre-smolts Acoustic telemetry Tag effects 

Notes

Acknowledgements

Thanks to N. Richardson, S. Dean, J. VanVuuren, J. Shiller, and L. Skinner for their help with sampling and feeding, to K. Hunter, S. Balfry and C. Biagi for their assistance and advice, and to the two anonymous reviewers for their helpful comments on the manuscript. Thanks to the fish used in this experiment, the Spius Creek Hatchery staff and the National Science and Engineering Research Council of Canada.

References

  1. Adams NS, Rondorf DW, Evans SD, Kelly JE (1998a) Effects of surgically and gastrically implanted radio transmitters on growth and feeding behaviour of juvenile chinook salmon. Trans Am Fish Soc 127:128–136, doi:10.1577/1548-8659(1998)127<0128:EOSAGI>2.0.CO;2CrossRefGoogle Scholar
  2. Adams NS, Rondorf DW, Evans SD, Kelly JE (1998b) Effects of surgically and gastrically implanted radio transmitters on swimming performance and predator avoidance of juvenile chinook salmon (Oncorhynchus tshawytscha). Can J Fish Aquat Sci 55:781–787, doi: 10.1139/cjfas-55-4-781 CrossRefGoogle Scholar
  3. Anglea SM, Geist DR, Brown RS, Deters KA, McDonald RD (2004) Effects of acoustic transmitters on swimming performance and predator avoidance of juvenile chinook salmon. N Am J Fish Manage 24(1):162–170, doi: 10.1577/M03-065 CrossRefGoogle Scholar
  4. Bradford MJ, Irvine JR (2000) Land use, fishing, climate change, and the decline of Thompson River, British Columbia, coho salmon. Can J Fish Aquat Sci 57:13–16, doi: 10.1139/cjfas-57-1-13 CrossRefGoogle Scholar
  5. Brett JR (1964) The respiratory metabolism and swimming performance of young sockeye salmon. J Fish Res Board Can 21:1183–1226Google Scholar
  6. Brown RS, Cooke SJ, Anderson WG, McKinley RS (1999) Evidence to challenge the ‘2% rule’ for biotelemetry. N Am J Fish Manage 19:867–871, doi: 10.1577/1548-8675(1999)019<0867:ETCTRF>2.0.CO;2 CrossRefGoogle Scholar
  7. Chittenden CM, Sura S, Butterworth KG, Cubitt KF, Plantalech Manel-la N, Balfry S et al (2008) Riverine, estuarine and marine migratory behaviour and physiology of wild and hatchery-reared coho salmon Oncorhynchus kisutch (Walbaum) smolts descending the Campbell River, BC, Canada. J Fish Biol 72:614–628, doi: 10.1111/j.1095-8649.2007.01729.x CrossRefGoogle Scholar
  8. Glova GJ, McInerney JE (1977) Critical swimming speeds of coho salmon (Oncorhynchus kisutch) fry to smolt stages in relation to salinity and temperature. J Fish Res Board Can 34:151–154Google Scholar
  9. Goede RW, Barton BA (1990) Organismic indices and an autopsy-based assessment as indicators of health and condition in fish. AFS Symposium 8:93–108Google Scholar
  10. Graham MS, Wood CM, Turner JD (1982) The physiological responses of the rainbow trout to strenuous exercise: interactions of water hardness and environmental acidity. Can J Zool 60:3153–3164CrossRefGoogle Scholar
  11. Greenstreet SPR, Morgan RIG (1989) The effect of ultrasonic tags on the growth rates of Atlantic salmon, Salmo salar, parr of varying size just prior to smolting. J Fish Biol 35(2):301–309, doi: 10.1111/j.1095-8649.1989.tb02979.x CrossRefGoogle Scholar
  12. Jepsen N, Davis LE, Schreck CB, Siddens B (2001) The physiological response of chinook salmon smolts to two methods of radio-tagging. Trans Am Fish Soc 130:495–500, doi: 10.1577/1548-8659(2001)130<0495:TPROCS>2.0.CO;2 CrossRefGoogle Scholar
  13. Jepsen N, Koed A, Thorstad EB, Baras E (2002) Surgical implantation of telemetry transmitters in fish: how much have we learned? Hydrobiologia 483:239–248, doi: 10.1023/A:1021356302311 CrossRefGoogle Scholar
  14. Jepsen N, Schreck C, Clements S, Thorstad EB (2004) A brief discussion of the 2% tag/bodyweight rule of thumb. In: Spedicato MT, Marmulla G, Lembo G (eds) Aquatic telemetry advances and applications. FAO-COISPA, Rome, pp 255–259Google Scholar
  15. Klontz GW (1994) Fish Hematology. In: Stolen JS, Fletcher TC, Rowley AF, Zelikoff JT, Kaattari SL, Smith SA (eds) Techniques in fish immunology. SOS Publications, New JerseyGoogle Scholar
  16. Lacroix GL, Knox D, McCurdy P (2004) Effects of implanted dummy acoustic transmitters on juvenile Atlantic salmon. Trans Am Fish Soc 133(1):211–220, doi: 10.1577/T03-071 CrossRefGoogle Scholar
  17. Lucas MC (1989) Effects of implanted dummy transmitters on mortality, growth and tissue reaction in rainbow-trout, Salmo-gairdneri Richardson. J Fish Biol 35(4):577–587, doi: 10.1111/j.1095-8649.1989.tb03007.x CrossRefGoogle Scholar
  18. Melnychuk MC, Welch DW, Walters CJ, Christensen V (2007) Riverine and early ocean migration and mortality patterns of juvenile steelhead trout (Oncorhynchus mykiss) from the Cheakamus River, British Columbia. Hydrobiologia 582:55–65, doi: 10.1007/s10750-006-0541-1 CrossRefGoogle Scholar
  19. Moore A, Russel IC, Potter ECE (1990) The effects of intraperitoneally implanted dummy acoustic transmitters on the behaviour and physiology of juvenile Atlantic salmon, Salmo salar L. J Fish Biol 37:713–721, doi: 10.1111/j.1095-8649.1990.tb02535.x CrossRefGoogle Scholar
  20. Smit H, Amelink-Koustaal JM, Vijverberg J, von Vaupel-Klein JC (1971) Oxygen consumption and efficiency of swimming goldfish. Comp Biochem Physiol 39(1):1–28, doi: 10.1016/0300-9629(71)90343-4 CrossRefGoogle Scholar
  21. Wedemeyer GA, Barton BA, McLeay DJ (1990) Stress and acclimation. In: Schreck CB, Moyle PB (eds) Methods for fish biology. American Fisheries Society, MarylandGoogle Scholar
  22. Welch DW, Boehlert GW, Ward BR (2003) POST-the Pacific Ocean salmon tracking project. Oceanol Acta 25(5):243–253, doi: 10.1016/S0399-1784(02)01206-9 CrossRefGoogle Scholar
  23. Welch DW, Ward BR, Batten SD (2004) Early ocean survival and marine movements of hatchery and wild steelhead trout (O. mykiss) determined by an acoustic array: Queen Charlotte Strait, British Columbia. Deep-Sea Res 51(6–9):897–909, doi: 10.1016/j.dsr2.2004.05.010 Google Scholar
  24. Welch DW, Batten SD, Ward BR (2007) Growth, survival and tag retention of surgically implanted acoustic tags in steelhead trout (O. mykiss). Hydrobiologia 582:289–299, doi: 10.1007/s10750-006-0553-x CrossRefGoogle Scholar
  25. Winter JD (1983) Underwater biotelemetry. In: Nielsen LA, Johnson DL (eds) Fisheries techniques. Am Fish Soc, BethesdaGoogle Scholar
  26. Zale AV, Brooke C, Fraser WC (2005) Effects of surgically implanted transmitter weights on growth and swimming stamina of small adult westslope cutthroat trout. Trans Am Fish Soc 134(3):653–660, doi: 10.1577/T04-050.1 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Cedar M. Chittenden
    • 1
    Email author
  • Kevin G. Butterworth
    • 1
  • K. Fiona Cubitt
    • 1
  • Melinda C. Jacobs
    • 2
  • Adrian Ladouceur
    • 2
  • David W. Welch
    • 2
  • R. Scott McKinley
    • 1
  1. 1.The University of British Columbia/Department of Fisheries and Oceans Centre for Aquaculture and Environmental ResearchWest VancouverCanada
  2. 2.Kintama Research Corp.NanaimoCanada

Personalised recommendations