Advertisement

Gyrodactylus salaris (Monogenea, Gyrodactylidae) infections on resident Arctic charr (Salvelinus alpinus) in southern Norway

  • Grethe RobertsenEmail author
  • Kjetil Olstad
  • Laetitia Plaisance
  • Lutz Bachmann
  • Tor A. Bakke
Special Issue Charr

Abstract

This study surveys the distribution of Gyrodactylus salaris on resident Arctic charr, Salvelinus alpinus, in lakes connected to three south-Norwegian watercourses: Numedalsvassdraget, Skiensvassdraget and Hallingdalsvassdraget. Gyrodactylus salaris infected charr was only recorded in Numedalsvassdraget. The parasites had the same mitochondrial haplotype as those previously reported on charr in Lake Pålsbufjorden, which is part of Numedalsvassdraget. Since the G. salaris-charr association is persistent in Pålsbufjorden and has a wide distribution above the stretches of the watercourse inhabited by anadromous salmonids, this is considered a stable, although perhaps relatively young, host-parasite system. More detailed analyses of these interactions revealed seasonal variations in the parasite population dynamics between late summer and late autumn, with heavier infections occurring in males and older fish in October. This is explained by the combined action of seasonal differences in temperature and physiology and ecology of host cohorts. It is assumed that the occurrence of G. salaris on charr in Pålsbufjorden resulted from a host switch to charr from rainbow trout, Onchorynchus mykiss. Host switches may cause significant expansions of the geographical range of pathogenic variants of G. salaris. Therefore, observations of frequently occurring G. salaris on charr have implications for the diagnosis, management and control of salmonid gyrodactylosis.

Keywords

Distribution Epidemiology 

Notes

Acknowledgements

We thank Cathrine Vollelv, Henning Pavels, Guro K. Sandvik, Terje Laskemoen and Bjørn R. Hansen for help in the field, and Åge Brabrand and Henning Pavels (Freshwater Ecology and Inland Fisheries Laboratory, NHM) for background information and help to determine sex and age of the fish. The project was supported by the Directorate for Natural Resources (DN contract nr. 05040026) and the Norwegian Research Council’s Wild Salmon Programme (Project nr. 145861/720).

References

  1. Altschul SF (1991) Amino acid substitution matrices from an information theoretic perspective. J Mol Biol 219:555–565PubMedCrossRefGoogle Scholar
  2. Appleby C (1996) Population dynamics of Gyrodactylus sp. (Monogenea) infecting the sand goby in the Oslo Fjorden, Norway. J Fish Biol 49:402–410Google Scholar
  3. Appleby C, Mo TA (1997) Population dynamics of Gyrodactylus salaris (Monogenea) infecting Atlantic salmon, Salmo salar, parr in the river Batnfjordelva, Norway. J Parasitol 83:23–30PubMedCrossRefGoogle Scholar
  4. Andersen PS, Buchmann K (1998) Temperature dependent population growth of Gyrodactylus derjavini on rainbow trout, Oncorhynchus mykiss. J Helminthol 72:9–14PubMedCrossRefGoogle Scholar
  5. Aydogdu A (2006) Variations in the infections of two monogenean species parasitizing the gills of the crucian carp (Carassius carassius), in relation to water temperature over a period of one year in Golbasi Dam Lake, Bursa, Turkey. Bull Europ Ass Fish Path 26:12–118Google Scholar
  6. Bakke TA, Harris PD, Jansen PA, Hansen LP (1992) Host specificity and dispersal strategy in gyrodactylid monogeneans, with particular reference to Gyrodactylus salaris Malmberg (Platyhelminthes, Monogenea). Dis aquat Org 13:63–74CrossRefGoogle Scholar
  7. Bakke TA, Jansen PA, Harris PD (1996) Differences in suceptibility of anadromous and resident stocks of Arctic charr to infections of Gyrodactylus salaris under experimental conditions. J Fish Biol 49:341–351Google Scholar
  8. Bakke TA, Harris PD, Cable J (2002) Host specificity dynamics: observations on gyrodactylid monogeneans. Int J Parasitol 32:281–308PubMedCrossRefGoogle Scholar
  9. Buchmann K (1997) Population increase of Gyrodactylus derjavini on rainbow trout induced by testosterone treatment of the host. Dis Aquat Organ 30:145–150CrossRefGoogle Scholar
  10. Bush AO, Lafferty KD, Lotz JM, Shostak AW (1997) Parasitology meets ecology on its own terms: Margolis et al. revisited. J Parasitol 83:575–583PubMedCrossRefGoogle Scholar
  11. Chubb JC (1977) Seasonal occurrence of helminths in freshwater fishes, Part I. Monogenea. Adv Parasitol 15:133–199PubMedCrossRefGoogle Scholar
  12. Cunningham CO, Mo TA, Collins CM, Buchmann K, Thiery R, Blanc G, Lautraite A (2001) Redescription of Gyrodactylus teuchis Lautraite, Blanc, Thiery, Daniel & Vigneulle, 1999 (Monogenea: Gyrodactylidae); a species identified by ribosomal RNA sequence. Syst Parasitol 48:141–150PubMedCrossRefGoogle Scholar
  13. Deerenberg C, Arpanius V, Daan S, Bos N (1997) Reproductive effort decreases antibody responsiveness. Proc R Soc Lond B 264:021–1029CrossRefGoogle Scholar
  14. Fabricius E, Gustafson K-J (1954) Further aquarium observations on the spawning behaviour of the charr, Salmo alpinus L. Rep Inst Freshwater Res Drottningholm 35:58–104Google Scholar
  15. Figenschou L, Folstad I, Liljedal S (2004) Lek fidelity of Arctic charr. Can J Zool 82:1278–1284CrossRefGoogle Scholar
  16. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4:1–9Google Scholar
  17. Hansen H, Bachmann L, Bakke TA (2003) Mitochondrial DNA variation of Gyrodactylus spp. (Monogenea, Gyrodactylidae) populations infecting Atlantic salmon, grayling and rainbow trout in Norway and Sweden. Int J Parasitol 33:1471–1478PubMedCrossRefGoogle Scholar
  18. Harris PD, Cable J, Tinsley RC, Lazarus CM (1999) Combined ribosomal DNA and morphological analysis of individual gyrodactylid monogeneans. J Parasitol 85:188–191PubMedCrossRefGoogle Scholar
  19. Harris PD, Shinn AP, Cable J, Bakke TA (2004) Nominal species of the genus Gyrodactylus von Nordmann 1832 (Monogenea: Gyrodactylidae), with a list of principal host species. Syst Parasitol 59:1–27PubMedCrossRefGoogle Scholar
  20. Jansen PA, Bakke TA (1991) Temperature-dependent reproduction and survival of Gyrodactylus salaris Malmberg, 1957 (Platyhelminthes: Monogenea) on Atlantic salmon (Salmo salar L.). Parasitology 102:105–112PubMedCrossRefGoogle Scholar
  21. Jansen PA, Bakke TA (1993) Regulatory processes in the monogenean Gyrodactylus salaris Malmberg-Atlantic salmon (Salmo salar L.) association. I. Field studies in southeast Norway. Fish Res 17:87–101CrossRefGoogle Scholar
  22. Johnsen BO, Jensen AJ (1992) Infection of Atlantic salmon, Salmo salar L., by Gyrodactylus salaris, Malmberg 1957, in the River Lakselva, Misvær in northern Norway. J Fish Biol 40:433–444CrossRefGoogle Scholar
  23. Johnsen BO, Møkkelgjerd PI, Jensen AJ (1999) The parasite Gyrodactylus salaris on salmon parr in Norwegian rivers, status report at the beginning of year 2000. NINA oppdragsmelding 617:1–129. (In Norwegian, English summary)Google Scholar
  24. Kanck M, Winger AC, Knudsen R, Kristoffersen R (2006) Seasonal dynamics of Gyrodactylus salaris (Monogenea) infecting two riverine anadromous populations of Arctic charr (Salvelinus alpinus L.) in Northern Norway. In: Abstracts of the 5th International Charr Symposium, Reykjavik, Iceland, 2–5 August 2006Google Scholar
  25. Klemetsen A, Amundsen P-A, Dempson JB, Jonsson B, Jonsson N, O`Connell MF, Mortensen E (2003) Atlantic salmon Salmo salar L., brown trout Salmo trutta L. and Arctic charr Salvelinus alpinus (L.): a review of aspects of their life histories. Ecol Freshw Fish 12:1–59CrossRefGoogle Scholar
  26. Knudsen R, Adolfsen P, Sandring S, Kristoffersen R, Siikavupio S, Rikardsen A (2006) The suitability of anadromous Arctic charr as host and vector of the monogenean Gyrodactylus salaris. Ecol Freshw Fish Doi: 10.1111/j.1600-0633.2006.00184.xGoogle Scholar
  27. Kristoffersen K, Klemetsen A (1991) Age determination of Arctic charr (Salvelinus alpinus) from surface and cross section of otoliths related to otolith growt. Nordic J Freshw Res 66:98–107Google Scholar
  28. Matějusová I, Gelnar M, McBeath AJA, Collins CM, Cunningham CO (2001) Molecular markers for gyrodactylids (Gyrodactylidae: Monogenea) from five fish families (Teleostei). Int J Parasitol 31:738–745PubMedCrossRefGoogle Scholar
  29. Mo TA (1988) Gyrodactylusundersøkelser av fisk i forbindelse med rotenonbehandlingen av Skibotnelva i august 1988. Gyrodactylusundersøkelsene ved Zoologisk Museum: 1–14 (In Norwegian)Google Scholar
  30. Mo TA (1992) Seasonal variations in the prevalence and infestation intensity of Gyrodactylus salaris Malmberg, 1957 (Monogenea, Gyrodactylidae) on Atlantic salmon parr, Salmo salar L., in the river Batnfjordselva, Norway. J Fish Biol 41:697–707CrossRefGoogle Scholar
  31. Nordling D, Andersson M, Zohari S, Gustafsson L (1998) Reproductive effort reduces specific immune response and parasite resistance. Proc R Soc Lond B 265:1291–1298CrossRefGoogle Scholar
  32. Olstad K, Robertsen G, Bachmann L, Bakke TA (2007) Intraspesific differences in host preference among Gyrodactylus salaris (Monogenea) strains: an experimental approach. Parasitology 00:000–000, Doi: 10.1017/S0031182006001715Google Scholar
  33. Ottová E, Simková A, Jurajda P, Dávidova M, Ondracková M, Pecínkova M, Gelnar M (2005) Sexual ornamentation and parasite infecton in males of common bream (Abramis brama): a reflection of immunocompetence status or simple cost of reproduction? Evol Ecol Res 7:581–593Google Scholar
  34. Petersson E, Järvi T (1997) Reproductive behaviour of sea trout (Salmo trutta) - consequences of sea-ranching. Behaviour 134:1–22CrossRefGoogle Scholar
  35. Pickering AD, Christie P (1980) Sexual differences in the incidence and severity of ectoparasitic infestation of the brown trout, Salmo trutta L. J Fish Biol 16:669–683CrossRefGoogle Scholar
  36. Robertsen G, Hansen H, Bachmann L, Bakke TA (2007) Arctic charr (Salvelinus alpinus) is a suitable host for Gyrodactylus salaris (Monogenea, Gyrodactylidae) in Norway. Parasitology 134: 257–267PubMedCrossRefGoogle Scholar
  37. Scott ME, Noakes DJ (1984) Temperature dependent reproduction and survival of Gyrodactylus bullatarudis (Monogenea) on Guppies (Poecilia reticulata). Parasitology 89:221–227Google Scholar
  38. Sheldon BC, Verhulst S (1996) Ecological immunology: costly parasite defence and trade-offs in evolutionary ecology. Trends Ecol Evol 11:317–321CrossRefGoogle Scholar
  39. Skarstein F, Folstad I, Liljedal S (2001) Whether to reproduce or not: immunesuppression and costs of parasites during reproduction in the Arctic charr. Can J Zool 79:271–278CrossRefGoogle Scholar
  40. Soleng A, Jansen PA, Bakke TA (1999) Transmission of the monogeneans Gyrodactylus salaris. Folia Parasitol 46:179–184Google Scholar
  41. Williams GC (1966) Natural selection, the cost of reproduction, and a refinement of Lack’s principle. Am Nat 100:687–690CrossRefGoogle Scholar
  42. Ziętara MS, Lumme J (2003) The crossroads of molecular, typological and biological species concepts: Two new species of Gyrodactylus Nordmann, 1832 (Monogenea: Gyrodactylidae). Syst Parasitol 55:39–52PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • Grethe Robertsen
    • 1
    Email author
  • Kjetil Olstad
    • 1
  • Laetitia Plaisance
    • 1
    • 2
  • Lutz Bachmann
    • 1
  • Tor A. Bakke
    • 1
  1. 1.Department of ZoologyNatural History Museum, University of OsloOsloNorway
  2. 2.Scripps Institution of OceanographyUniversity of California, San DiegoLa JollaUSA

Personalised recommendations