Environmental Biology of Fishes

, Volume 75, Issue 2, pp 183–193

Thermal Tolerance of Diploid Versus Triploid Rainbow Trout and Brook Trout Assessed by Time to Chronic Lethal Maximum

  • Peter F. Galbreath
  • Nathan D. Adams
  • Lee. W. SherrillIII
  • Thomas H. Martin
Article

Synopsis

An effect of ploidy on thermal tolerance in juvenile trout was assessed in a series of tests comparing time to chronic lethal maximum (CLMax). Diploid and triploid fish were produced from a common spawn for three different groups each of brook trout Salvelinus  fontinalis and of rainbow trout Oncorhynchus  mykiss. One or two CLMax tests were performed per group, on between 15 and 50 individuals per ploidy within groups. The tests involved exposure of fish to a progressive 2°C day−1 water temperature increase and recording of the time at which each individual fish reached loss of equilibrium (LE). The time to LE data were rank transformed and analyzed as a randomized complete block design. Although relative performance varied among trials, the analysis indicated overall differences due to ploidy were small and nonsignificant among both brook trout and rainbow trout. Size proved to be significantly correlated with time to LE in the brook trout trials, but not in the rainbow trout trials. Two of the six groups included a large proportion of fish which had received a heat shock following fertilization, but were not successfully triploidized. In both cases, thermal tolerance of the heat-shocked diploids was similar to that of the non-heat shocked control diploids, indicating no persistent effect of the heat shock on thermal tolerance.

Keywords

ploidy triploidy critical thermal maximum brook charr 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altimiras, J., Axelsson, M., Claireaux, G., Lefrançois, C., Mercier, C., Farrell, A.P. 2002Cardiorespiratory status of triploid brown trout during swimming at two acclimation temperaturesJ. Fish Biol.60102116CrossRefGoogle Scholar
  2. Baker, S.C., Heidinger, R.C. 1996Upper lethal temperature of fingerling black crappieJ. Fish Biol.4811231129Google Scholar
  3. Becker, C.D., Genoway, R.G. 1979Evaluation of the critical thermal maximum for determining thermal tolerance of freshwater fishEnviron. Biol. Fishes4245256Google Scholar
  4. Beitinger, T.L., Bennett, W.A., McCauley, R.W. 2000Temperature tolerances of North American freshwater fishes exposed to dynamic changes in temperatureEnviron. Biol. Fishes58237275CrossRefGoogle Scholar
  5. Benfey, T.J 1999The physiology and behavior of triploid fishesRev. Fish. Sci.73967CrossRefGoogle Scholar
  6. Benfey, T.J., Sutterlin, A.M. 1984Oxygen utilization by triploid landlocked Atlantic salmonAquaculture426973CrossRefGoogle Scholar
  7. Benfey, T.J., Biron, M. 2000Acute stress response in triploid rainbow trout (Oncorhynchus mykiss) and brook trout (Salvelinus fontinalis)Aquaculture184167176CrossRefGoogle Scholar
  8. Benfey, T.J., McCabe, L.E., Pepin, P. 1997Critical thermal maxima of diploid and triploid brook charr, Salvelinus fontinalisEnviron. Biol. Fishes49259264CrossRefGoogle Scholar
  9. Biron, M., Benfey, T.J. 1994Cortisol, glucose and hematocrit changes during acute stress, cohort sampling, and diel cycle in diploid and triploid brook trout (Salvelinus fontinalis Mitchell)Fish Phys. Biochem.13153160Google Scholar
  10. Blanc, J.-M., Chourrout, D., Kreig, F. 1987Evaluation of juvenile rainbow trout survival and growth in half-sib families from diploid and tetraploid siresAquaculture65215220CrossRefGoogle Scholar
  11. Blanc, J.-M., Poisson, H., Vallée, F. 1992Survival, growth and sexual maturation of the triploid hybrid between rainbow trout and Arctic charAquat. Living Resour.51521Google Scholar
  12. Bonnet, S., Haffray, P., Blanc, J.M., Vallee, F., Vauchez, C., Faure, A., Fauconneau, B. 1999Genetic variation in growth parameters until commercial size in diploid and triploid freshwater rainbow trout (Oncorhynchus mykiss) and seawater brown trout (Salmo trutta)Aquaculture173359375CrossRefGoogle Scholar
  13. Brett, J.R. 1956Some principles in the thermal requirements of fishesQ. Rev. Biol.317587CrossRefGoogle Scholar
  14. Carline, R.F., Machung, J.F. 2001Critical thermal maxima of wild and domestic strains of troutTrans. Am. Fish. Soc.13012111216CrossRefGoogle Scholar
  15. Chourrout, D. 1980Thermal induction of diploid gynogenesis and triploidy in the eggs of rainbow trout (Salmo gairdneri Richardson)Reprod. Nutr. Dev.20727733Google Scholar
  16. Conover, W.J., Iman, R.L. 1981Rank transformations as a bridge between parametric and nonparametric statisticsAm. Stat.35124129Google Scholar
  17. Cotter, D., O’Donovan, V., Drumm, A., Roche, N., Ling, E.N., Wilkins, N.P. 2002Comparison of freshwater and marine performances of all-female diploid and triploid Atlantic salmon (Salmo salar L.)Aquac. Res.334353CrossRefGoogle Scholar
  18. Dean, J.M. 1973

    The response of fish to a modified thermal environment

    Chavin, W. eds. Responses of Fish to Environmental ChangesCharles C. Thomas PublisherSpringfield, Illinois3363
    Google Scholar
  19. Dillon, J.C., Schill, D.J., Teuscher, D.M. 2000Relative return to creel of triploid and diploid rainbow trout stocked in eighteen Idaho streamsNorth Am. J. Fish. Manag.2019CrossRefGoogle Scholar
  20. Elliot, J.M. 1981

    Some aspects of thermal tolerance on freshwater teleosts

    Pickering, A.D. eds. Stress and FishAcademic PressUnited Kingdom209245
    Google Scholar
  21. Galbreath, P.F., Samples, B. 2000Optimization of thermal shock protocols for induction of triploidy in brook troutNorth Am. J. Aquac.62249259CrossRefGoogle Scholar
  22. Galbreath, P.F., Adams, N.D., Martin, T.H. 2004Influence of heating rate on measurement of time to thermal maximum in troutAquaculture241587599CrossRefGoogle Scholar
  23. Gillet, C., Vauchez, C., Haffray, P. 2001Triploidy induced by pressure shock in Arctic charr (Salvelinus alpinus): Growth survival and maturation until the third yearAquat. Living Resour.14327334CrossRefGoogle Scholar
  24. Herbinger, C.M., Newkirk, G.F., Lanes, S.T. 1990Individual marking of Atlantic salmon: Evaluation of cold branding and jet injection of Alcian Blue in several fin locationsJ. Fish Biol.3699101CrossRefGoogle Scholar
  25. Hutchison, V.H. 1976

    Factors influencing thermal tolerances of individual organisms

    Esch, G.W.McFarlane, R.W. eds. Thermal Ecology II, CONF-750425National Technical Information Service, United States Department of CommerceSpringfield, Virginia1026
    Google Scholar
  26. Hutchison, V.H., Maness, J.D. 1979The role of behavior and temperature acclimation and tolerance in ectothermsAm. Zool.19367384Google Scholar
  27. Hyndman, C.A., Kieffer, J.D., Benfey, T.J. 2003aThe physiological response of diploid and triploid brook trout to␣exhaustive exerciseComp. Biochem. Physiol.134A167179Google Scholar
  28. Hyndman, C.A., Kieffer, J.D., Benfey, T.J. 2003bPhysiology and survival of triploid brook trout following exhaustive exercise in warm waterAquaculture221629643CrossRefGoogle Scholar
  29. Ihssen, P.E., McKay, L.R., McMillan, I., Phillips, R.B. 1990Ploidy manipulation and gynogenesis in fishes: Cytogenetic and fisheries applicationsTrans. Am. Fish. Soc.119698717CrossRefGoogle Scholar
  30. Iman, R.L., Hora, S.C., Conover, W.J. 1984Comparison of asymmetrically distribution-free procedures for the analysis of complete blocksJ. Am. Stat. Assoc.79674685Google Scholar
  31. Johnson, R.M., Shrimpton, J.M., Heath, J.W., Heath, D.D. 2004Family, induction methodology and interaction effects on the performance of diploid and triploid Chinook salmon (Oncorhynchus tshawytscha)Aquaculture234123142CrossRefGoogle Scholar
  32. Johnstone, R. 1996Experience with salmonid sex reversal and triploidisation technologies in the United KingdomBull. Aquac. Assoc. Can.96913Google Scholar
  33. Jungalwalla, P.J. 1991Production of non-maturing Atlantic salmon in TasmaniaCan. Tech. Rep. Fish. Aquat. Sci.17894771Google Scholar
  34. Kilgour, D.M., McCauley, R.W. 1986Reconciling the two methods of measuring upper lethal temperatures in fishesEnviron. Biol. Fishes17281290CrossRefGoogle Scholar
  35. Lutterschmidt, W.I., Hutchison, V.H. 1997The critical thermal maximum: History and critiqueCan. J. Zool.7515611574Google Scholar
  36. Lutz, C.G. 2001Practical Genetics for AquacultureFishing News Books, Blackwell ScienceOxford, United Kingdom235Google Scholar
  37. McGeachy, S.A., O’Flynn, F.M., Benfey, T.J., Friars, G.W. 1996Seawater performance of triploid Atlantic salmon in New Brunswick aquacultureBull. Aquac. Assoc. Can.962428Google Scholar
  38. Mercier, C., Axelsson, M., Imbert, N., Claireaux, G., Lefrancois, C., Altamiras, J., Farrell, A.P. 2002In vitro cardiac performance in triploid brown trout at two acclimation temperaturesJ. Fish Biol.60117133CrossRefGoogle Scholar
  39. Moyle, P.B., Cech, J.J. 1996Fishes: An Introduction to Ichthyology,3Prentice HallUpper Saddle River, New Jersey, USA590Google Scholar
  40. Myers, J.M., Hershberger, W.K. 1991Early growth and survival of heat-shocked and tetraploid-derived triploid rainbow trout (Oncorhynchus mykiss)Aquaculture9697107CrossRefGoogle Scholar
  41. Ojolick, E.J., Cusack, R., Benfey, T.J., Kerr, S.R. 1995Survival and growth of all-female diploid and triploid rainbow trout (Oncorhynchus mykiss) reared at chronic high temperatureAquaculture131177187CrossRefGoogle Scholar
  42. Oliva-Teles, A., Kaushik, S.J. 1987Metabolic utilization of diets by polyploidy rainbow trout (Salmo gairdneri)Comp. Biochem. Physiol.88A4547CrossRefGoogle Scholar
  43. Paladino, F.V., Spotila, J.R., Schubauer, J.P., Kowalski, K.T. 1980The critical thermal maximum: A technique used to elucidate physiological stress and adaptation in fishesRev. Can. Biol.39115122Google Scholar
  44. Pörtner, H.O. 2002Climate variations and the physiological basis of temperature dependent biogeography: Systemic to molecular hierarchy of thermal tolerance in animalsComp. Biochem. Physiol.132A739761Google Scholar
  45. Quillet, E., Chevassus, B., Kreig, F. 1987

    Characterization of auto- and allotriploid salmonids for rearing in seawater cages

    Tiews, K. eds. Selection, Hybridization, and Genetic Engineering in AquacultureHeenemann VerlagsBerlin239252
    Google Scholar
  46. Quillet, E., Gagnon, J.L. 1990Thermal induction of gynogenesis and triploidy in Atlantic salmon (Salmo salar) and their potential interest for aquacultureAquaculture89351364CrossRefGoogle Scholar
  47. Sadler, J., Pankhurst, N.W., Pankhurst, P.M., King, H. 2000aPhysiological stress responses to confinement in diploid and triploid Atlantic salmonJ. Fish Biol.56506518CrossRefGoogle Scholar
  48. Sadler, J., Wells, R.M.G., Pankhurst, P.M., Pankhurst, N.W. 2000bBlood oxygen transport, rheology and haematological responses to confinement stress in diploid and triploid Atlantic salmon, Salmo salarAquaculture184349361CrossRefGoogle Scholar
  49. Selong, J.H., McMahon, T.E., Zale, A.V., Barrows, F.T. 2001Effect of temperature on growth and survival of bull trout, with application of an improved method for determining thermal tolerance in fishesTrans. Am. Fish. Soc.13010261037CrossRefGoogle Scholar
  50. Simon, D.C., Scalet, C.G., Dillon, J.C. 1993Field performance of triploid and diploid rainbow trout in South Dakota pondsNorth Am. J. Fish. Manag.13134140CrossRefGoogle Scholar
  51. Stillwell, E.J., Benfey, T.J. 1996Hemoglobin level, metabolic rate, opercular abduction rate and swimming efficiency in female triploid brook trout (Salvelinus fontinalis)Fish Physiol. Biochem.15377383CrossRefGoogle Scholar
  52. Stillwell, E.J., Benfey, T.J. 1997The critical swimming velocity of diploid and triploid brook troutJ. Fish Biol.51650653CrossRefGoogle Scholar
  53. Stuart, R. 1996Triploidy: A commercial application in CanadaBull. Aquac. Assoc. Can.962931Google Scholar
  54. Sutterlin, A.M., Collier, C. 1991Some observations on the commercial use of triploid rainbow trout and Atlantic salmon in Newfoundland, CanadaCan. Tech. Rep. Fish. Aquat. Sci.17898995Google Scholar
  55. Tave, D. 1993Genetics for Fish Hatchery Managers2An Avi Book, Van Nostrand ReinholdNew York415Google Scholar
  56. Thedinga, J.F., Johnson, S.W. 1995Retention of jet-injected marks on juvenile coho and sockeye salmonTrans. Am. Fish. Soc.124782785CrossRefGoogle Scholar
  57. Thorgaard, G.H. 1992Application of genetic technologies to rainbow troutAquaculture100597CrossRefGoogle Scholar
  58. Utter, F.M., Johnson, O.W., Thorgaard, G.H., Rabinovitch, P.S. 1983Measurement and potential applications of induced triploidy in Pacific salmonAquaculture35125135CrossRefGoogle Scholar
  59. Virtanen, E., Forsman, L., Sundby, A. 1990Triploidy decreases aerobic swimming capacity of rainbow trout (Salmo gairdneri)Comp. Biochem. Physiol.96A117121CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Peter F. Galbreath
    • 1
    • 3
  • Nathan D. Adams
    • 1
  • Lee. W. SherrillIII
    • 1
  • Thomas H. Martin
    • 2
  1. 1.Mountain Aquaculture Research CenterWestern Carolina UniversityCullowheeUSA
  2. 2.Department of BiologyWestern Carolina UniversityCullowheeUSA
  3. 3.Columbia River Inter-Tribal Fish CommissionPortlandUSA

Personalised recommendations