Environmental Biology of Fishes

, Volume 73, Issue 4, pp 453–462 | Cite as

Aerial and aquatic feeding in the silver arawana, Osteoglossum bicirrhosum

  • Dayv Lowry
  • Alpa P. Wintzer
  • Michael P. Matott
  • Lisa B. Whitenack
  • Daniel R. Huber
  • Mason Dean
  • Philip J. Motta
Article

Synopsis

The silver arawana, Osteoglossum bicirrhosum, hunts along shorelines and within flooded forests in the Amazon River basin and supplements its limited consumption of aquatic vertebrates by leaping from the water to obtain terrestrial and arboreal prey. We offered O. bicirrhosum prey both suspended above and submerged below the surface of the water. From high-speed digital recordings, we measured kinematic variables associated with the jaws, cranium, pectoral fins, and body during orientation and prey capture. Aquatic and aerial feeding events were kinematically distinct, with aerial events generally involving faster, larger movements and a distinct delay in the onset of lower jaw depression until the head had left the water. The comparatively large gape during leaping may facilitate prey capture by overcoming variability in the apparent position of the prey due to refraction, while the delayed onset of mouth opening may serve to reduce the effects of drag. This distinctive leaping behaviour allows exploitation of the terrestrial prey base, especially during seasonal inundation of the Amazon River basin when the aquatic food base is widely dispersed.

Keywords

leaping kinematics Osteoglossomorpha feeding behaviour feeding ecology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alfaro, M.E. 2003Sweeping and striking: a kinematic study of the trunk during prey capture in three thamnophiine snakesJ. Exp. Biol.20623812392Google Scholar
  2. Cabin, R.J., Mitchell, R.J. 2000To Bonferroni or not to Bonferroni: When and how are the questionsBull. Ecol. Soc. Am.81246248Google Scholar
  3. Cook, A. 1996Ontogeny of feeding morphology and kinematics in juvenile fishes: a case study of the cottid fish Clinocottus analisJ. Exp. Biol.19919611971Google Scholar
  4. Deban, S.M., Marks, S.B. 2002Metamorphosis and the evolution of feeding behavior in salamanders of the family PlethodontidaeZool. J. Linn. Soc.134375400Google Scholar
  5. Dill, L.M. 1977Refraction and the spitting behavior of the archerfish (Toxotes chatareus)Behav. Ecol. Sociobiol.2169184Google Scholar
  6. Galacatos, K., Barriga-Salazar, R., Stewart, D.J. 2004Seasonal and habitat influences on fish communities within the lower Yasuni River basin of the Ecuadorian AmazonEnviron. Biol. Fish.713351Google Scholar
  7. Gans, C., Gorniak, G.C. 1982Functional morphology of lingual protrusion in marine toads (Bufo marinus)Am. J. Anat.163195222Google Scholar
  8. Goulding, M. 1980The Fishes and the Forest: Explorations in Amazonian Natural HistoryUniversity of California PressLos Angeles280Google Scholar
  9. Harrison, I.J., Miller, P.J. 1992

    Gobiidae

    Teugels, G.G. eds. Fauna des Poissons d’Eaux douces et saumatres de l’Afrique de l’ouestMusée Royal de l’Afrique CentraleParis, France798821
    Google Scholar
  10. Hyatt, K.D. 1971. An analysis of some selected aspects of feeding in the cyprinodontid Rivulus hartii. MS thesis, University of British Columbia, VancouverGoogle Scholar
  11. Kalleberg, H. 1958Observations in a Stream tank of Territoriality and Competition in Juvenile Salmon and Trout (Salmo salar L. and S. trutta L.)Institute of Freshwater ResearchDrottningholm5598Google Scholar
  12. Lowe-McConnell, R.H 1964The fishes of the Rupununi Savana district of British Guiana, South America. Part 1. Ecological groupings of fish species and effects of the seasonal cycle on the fishZool. J. Linn. Soc.45103144Google Scholar
  13. Lowe-McConnell, R.H. 1975Fish Communities in Tropical FreshwatersLongman Inc.New York337Google Scholar
  14. Luiselli, L., Angelici, F.M., Akani, G.C. 2002Comparative feeding strategies and dietary plasticity of the sympatric cobras Naja melanoleuca and Naja nigricollis in three diverging Afrotropical habitatsCan. J. Zool.805563Google Scholar
  15. Matthes, H. 1977. The problem of rice-eating fish in the central Niger delta. pp. 1–26 FAO/CIFA Symposium on river and floodplain fisheries in, FAO, BurundiGoogle Scholar
  16. Moran, M.D. 2003Arguments for rejecting the sequential Bonferroni in ecological studiesOikos100403405Google Scholar
  17. Nemeth, D.H. 1997Modulation of attack behavior and its effect on feeding performance in a trophic generalist fish, Hexagrammos decagrammusJ. Exp. Biol.20021552164Google Scholar
  18. Nishikawa, K.C., Cannatella, D.C. 1991Kinematics of prey capture in the tailed frog Ascaphus truei (Anura: Ascaphidae)Zool. J. Linn. Soc.103289307Google Scholar
  19. Norton, S.F. 1991Capture success and diet of cottid fishes: The role of predator morphology and attack kinematicsEcology7218071819Google Scholar
  20. Porter, H.T., Motta, P.J. 2000A comparison of prey capture behavior and kinematics in three ram feeding fishesAm. Zool.4011751175Google Scholar
  21. Quinn, G.P., Keough, M.J. 2002Experimental Design and Data Analysis for Biologists Cambridge University PressCambridge United Kingdom537Google Scholar
  22. Reilly, S.M. 1996The metamorphosis of feeding kinematics in Salamandra salamandra and the evolution of terrestrial feeding behaviorJ. Exp. Biol.19912191227Google Scholar
  23. Reist, J.D. 1985An empirical evaluation of several univariate methods that adjust for size variation in morphometric dataCan. J. Zool.6314291439Google Scholar
  24. Rossel, S., Corlija, J., Schuster, S. 2002Predicting three-dimensional target motion: How archer fish determine where to catch their dislodged preyJ. Exp. Biol.20533213326Google Scholar
  25. Saint-Paul, U., Zuanon, J., Correa, M., Garcia, M., Fabre, N., Berger, U., Junk, W. 2000Fish communities in central Amazonian white- and blackwater floodplainsEnviron. Biol. Fish.57235250Google Scholar
  26. Sass, G.G., Motta, P.J. 2002The effects of satiation on prey capture kinematics in the largemouth bass, Micropterus salmoidesEnviron. Biol. Fish.65441454Google Scholar
  27. Seghers, B.H. 1978Feeding Behavior and Terrestrial Locomotion in the Cyprinodontid fish, Rivulus hartii (Boulenger)Verhandlungen Internationale Vereinigung fur Theoretische und Angewandte LimnologieDenmark20552059Google Scholar
  28. Shaffer, H.B., Lauder, G.V. 1988The ontogeny of functional design: Metamorphosis of feeding behavior in the tiger salamander (Ambystoma tigrinum)J. Zool. (Lond.)216437454Google Scholar
  29. Sponder, D., Lauder, G.V. 1981Terrestrial feeding in the mudskipper, Periophthalmus: a cineradiographic analysisJ. Zool. (Lond.)193517530Google Scholar
  30. Summers, A.P., Darouian, K.F., Richmond, A.M., Brainerd, E.L. 1998Kinematics of aquatic and terrestrial prey capture in Terrapene carolina, with implications for the evolution of feeding in cryptodire turtlesJ. Exp. Zool.281280287Google Scholar
  31. Taylor, M.A. 1987How tetrapods feed in water: A functional analysis by paradigmZool. J. Linn. Soc.91171195Google Scholar
  32. Tejerina-Garro, F.L., Fortin, R., Rodriguez, M.A. 1998Fish community structure in relation to environmental variation in floodplain lakes of the Araguaia River, Amazon BasinEnviron. Biol. Fish.51399410Google Scholar
  33. Timmermans, P.J.A. 2001Prey catching in the archer fish: Angles and probability of hitting an aerial targetBehav. Processes5593105Google Scholar
  34. Souren, P.M 2004Prey catching in archer fish: The role of posture and morphology in aiming behaviorPhysiol. Behav.81101110Google Scholar
  35. Verwey, J. 1928Iets over de voedingswijze van Toxotes jaculatorDe Tropische Natuur17162166Google Scholar
  36. Vogel, S. 1994Life in Moving FluidsPrinceton University PressPrinceton467Google Scholar
  37. Webb, P.W. 1984Form and function in fish swimmingSci. Am.2517282Google Scholar
  38. Weihs, D. 1989Design features and mechanics of axial locomotion in fishAm. Zool.29151160Google Scholar
  39. Winemiller, K., Adite, A. 1997Convergent evolution of weakly electric fishes from floodplain habitats in Africa and South AmericaEnviron. Biol. Fish.49175186Google Scholar
  40. Young, B.A. 1991The influences of the aquatic medium on the prey capture system of snakesJ. Nat. Hist.25519531Google Scholar
  41. Zahl, P.A., J.J.A. McLaughlin & R.J. Gomprecht. 1977. Visual versatility and feeding of the four-eyed fishes, Anableps. Copeia 1977: 791–793.Google Scholar
  42. Zar, J.H. 1999Biostatistical AnalysisPrentice HallUpper Saddle River New Jersey USA919Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Dayv Lowry
    • 1
  • Alpa P. Wintzer
    • 1
    • 2
  • Michael P. Matott
    • 1
    • 3
  • Lisa B. Whitenack
    • 1
  • Daniel R. Huber
    • 1
  • Mason Dean
    • 1
    • 4
  • Philip J. Motta
    • 1
  1. 1.Department of BiologyUniversity of South FloridaTampaU.S.A.
  2. 2.U.S. Fish and Wildlife ServiceStocktonU.S.A.
  3. 3.Eckerd CollegeNatural Sciences CollegiumSt. PetersburgU.S.A.
  4. 4.Ecological and Evolutionary BiologyUniversity of CaliforniaIrvineU.S.A.

Personalised recommendations