Advertisement

Environmental Biology of Fishes

, Volume 71, Issue 4, pp 403–411 | Cite as

Homeothermy in adult salmon sharks, Lamna ditropis

  • Kenneth J. Goldman
  • Scot D. Anderson
  • Robert J. Latour
  • John A. Musick
Article

Abstract

Salmon sharks, Lamna ditropis, belong to a small group of sharks that possess vascular counter-current heat exchangers (retia mirabilia) allowing retention of metabolically generated heat, resulting in elevated body temperatures. The capacity of free-swimming lamnid sharks to regulate rates of heat gain and loss has not been demonstrated. Using acoustic telemetry, we recorded swimming depth and stomach temperature from four free-swimming salmon sharks in Prince William Sound, Alaska. Temperature data were obtained over time periods ranging from 3.8 to 20.7 h. Temperature profiles of the water column were obtained concurrently for use as estimates of ambient temperature. Mean stomach temperature among four individuals tracked ranged from 25.0 to 25.7°C. These sharks defended specific elevated temperatures regardless of changes in ambient temperature, which ranged from about 5–16°C. The maximum observed elevation of stomach temperature over ambient was 21.2°C. Because stomach temperatures were so strictly maintained relative to changes in ambient temperature, a thermal rate coefficient, k, (°C min−1 °C thermal gradient−1) for cooling of 0.053 min−1 was obtained via a `control' experiment with a dead salmon shark. We show that free-swimming adult salmon sharks maintain a specific stomach temperature independent of changes in ambient temperature through a combination of physical and physiological means, and essentially function as homeotherms. This unique ability is probably the underlying factor in the evolutionary niche expansion of salmon sharks into boreal waters and in their ability to actively pursue and capture highly active prey such as salmon.

thermoregulation telemetry stomach temperature endothermy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, S. D. & K. J. Goldman. 2001. Temperature mea-surements from salmon sharks, Lamna ditropis, in Alaskan waters. Copeia 2001: 794-796.Google Scholar
  2. Bernal, D., K. A. Dickson, R. E. Shadwick & J. B. Graham. 2001a. Review: Analysis of the evolutionary convergence for high performance swimming in lamnid sharks and tunas. Comparat. Biochem. Physiol. A 129: 695-726.Google Scholar
  3. Bernal, D., C. Sepulveda & J. B. Graham. 2001b. Water tunnel studies of heat balance in swimming mako sharks. J. Exp. Biol. 204: 4043-4054.Google Scholar
  4. Burne, R. H. 1923. Some peculiarities of the blood vascular system of the porbeagle shark, Lamna cornubica. Philos. Trans. Roy. Soc., London 212: 209-257.Google Scholar
  5. Blagoderov, A. I. 1994. Seasonal distribution and some notes on the biology of salmon shark (Lamna ditropis )in the north-western Pacific Ocean. J. Ichthyol. 34: 115-121. (Originally published in, and translated from, Voprosy Ikhtiologii. )Google Scholar
  6. Block, B. A., H. Dewar, S. B. Blackwell, T. D. Williams, E. D. Prince, C. J. Farwell, A. Boustany, S. L. H. Teo, A. Seitz, A. Walli & D. Fudge 2001. Migratory movements, depth pref-erences, and thermal biology of Atlantic bluefin tuna. Science 293: 1310-1314.Google Scholar
  7. Brill, R. W., H. Dewar & J. B. Graham. 1994. Basic concepts relevant to heat transfer in fishes, and their use in measuring the physiological thermoregulatory abilities of tunas. Env. Bio. Fish. 40: 109-124.Google Scholar
  8. Carey, F. G., J. G. Casey, H. L. Pratt, D. Urquhart & J. E. McCosker. 1985. Temperature, heat production, and heat exchange in lamnid sharks. Southern California Academy of Sciences, Memoirs 9: 92-108.Google Scholar
  9. Carey, F. G. & K. D. Lawson. 1973. Temperature regulation in free-swimming bluefin tuna. Comparat. Biochem. Physiol. 44: 375-392.Google Scholar
  10. Carey, F. G., J. M. Teal & J. W. Kanwisher. 1981. The visceral temperatures of mackerel sharks (Lamnidae). Physiol. Zool. 54: 334-344.Google Scholar
  11. Compagno, L. J. V. 2001. Sharks of the World. An annotated and illustrated catalogue of shark species known to date. Bullhead, mackerel and carpet sharks (Heterodontiformes, Lamnifor-mes and Orectolobiformes). FAO Species Catalogue for Fishery Purposes, No. 1, Vol. 2 Rome, FAO. 269 pp.Google Scholar
  12. Dewar, H., J. B. Graham & R. W. Brill. 1994. Studies of tropical tuna swimming performance in a large water tunnel, II. Thermoregulation. J. Exp. Bio. 192: 33-44.Google Scholar
  13. Eschricht, D. F. & J. Müller. 1835a. Ñber die arteriösen and venösen Wundernetze an der Leber und einen merkwu ¨rdigen Bau dieses Organes beim Thun sche, Thynnus vulgaris. Physikal Abhandlungen der Konig. Wissenschaften Berlin. pp. 1-32.Google Scholar
  14. Eschricht, D. F. & J. Müller. 1835b. Nachtrag zu der Abhand-lung der Herren Eschricht und Müller über die Wundernetze an der Leber des Thun sches: U ¨ber die Wundernetze am Darmkanal des Squalus vulpes L., Alopecias vulpes Nob. Physikal. Abhandlungen der K. Wissenschaften Berlin, pp. 325-328.Google Scholar
  15. Fudge, D. S. & E. D. Stevens. 1996. The visceral retia mirabilia of tuna and sharks: an annotated translation and discussion of the Eschricht & Mu ¨ller 1835 paper and related papers. Guelph Ichthyology Reviews 4: 1-92.Google Scholar
  16. Goldman, K. J. 1997. Regulation of body temperature in the white shark, Carcharodon carcharias. J. Comparat. Physiol. B 167: 423-429.Google Scholar
  17. Goldman, K. J. 2002. Aspects of age, growth, demographics and thermal biology of two Lamniform shark species. Ph. D. dissertation. College of William and Mary, School of Marine Science, Virginia Institute of Marine Science. 220 pp.Google Scholar
  18. Goldman, K. J., S. D. Anderson, J. E. McCosker & A. P. Klim-ley. 1996. Temperature, swimming depth, and movements of a white shark (Carcharodon carcharias)at the South Faral-lon Islands, California. pp. 111-120. In: A. P. Klimley & D. G. Ainley (eds. )Biology of the white shark Carcharodon car-charias, Academic Press, San Diego, CA.Google Scholar
  19. Goldman, K. J. & J. A. Musick. 2005. Biology of the Salmon Shark, Lamna ditropis. In: E. K. Pikitch & M. Camhi (eds. ) Sharks of the Open Ocean. Blackwell Scientific.Google Scholar
  20. Hickman, C. P., L. S. Roberts & F. M. Hickman. 1984. Inte-grated Principles of Zoology, 7th edition, Times Mirror/ Mosbey College Pub, St. Louis, MO.Google Scholar
  21. Hochachka, P. W., W. C. Hulbert & M. Guppy. 1978. The tuna power plant and furnace. pp. 153-181. In: G. D. Sharp & A. E. Dizon (eds. ) The Physiological Ecology of Tunas, Academic Press, New York.Google Scholar
  22. Holland, K. N., R. W. Brill, R. K. C. Chang, J. R. Sibert & D. A. Fournier. 1992. Physiological and behavioral thermoregula-tion in bigeye tuna (Thunnus obesus). Nature 358: 410-411.Google Scholar
  23. Holland, K. N. & J. R. Sibert. 1994. Physiological thermoregu-lation in bigeye tuna, Thunnus obesus. Env. Biol. Fish. 40: 319-327.Google Scholar
  24. Kitagawa, T., H. Hakata, S. Kimura & S. Tsuji. 2001. Ther-moconservation mechanisms inferred from peritoneal cavity temperature in free-swimming Pacific bluefin tuna, Thunnus thynnus orientalis. Mar. Ecol. Progr. Ser. 220: 253-263.Google Scholar
  25. Lowe, C. G. & K. J. Goldman. 2001. Thermal and bioenergetics of elasmobranchs: bridging the gap. Env. Biol. Fish. 60: 251-266.Google Scholar
  26. McCosker, J. E. 1987. The white shark, Carcharodon carcharias, has a warm stomach. Copeia 1987: 195-197.Google Scholar
  27. Nakano, H. & K. Nagasawa. 1994. Distribution of the salmon shark (Lamna ditropis )in the North Pacific Ocean and Bering Sea. Salmon Report Series, No. 37: 226-237. National Re-search Institute of Far Seas Fisheries, Shimizu Japan.Google Scholar
  28. Neill, W. H., R. K. C. Chang & A. E. Dizon. 1976. Magnitude and ecological implications of thermal inertia in skipjack tuna, Katsuwonus pelamis (Linnaeus). Env. Bio. Fish 1: 61-80.Google Scholar
  29. Neill, W. H. & E. D. Stevens. 1974. Thermal inertia versus thermoregulation in ''warm ''turtles and tunas. Science 184: 1008-1010.Google Scholar
  30. Smith R. L. & D. Rhodes. 1983. Body temperature of the sal-mon shark, Lamna ditropis. J. Mar. Biol. Associat. U. K. 63: 243-244.Google Scholar
  31. Stevens, E. D., J. W. Kanwisher & F. G. Carey. 2000. Muscle Temperature in free-swimming giant Atlantic bluefin tuna (Thunnus thynnusL. ). J. Therm. Biol. 25: 419-423.Google Scholar
  32. Strasburg, D. W. 1958. Distribution, abundance, and habits of pelagic sharks in the central Pacific Ocean. U. S. Fish. Bull. 58: 335-361.Google Scholar
  33. Tanaka, S. 1980. Biological investigation of Lamna ditropis in the north-western waters of the North Pacific. pp. 000-000. In: Report of Investigation on Sharks as a New Marine Re-source (1979), Japan Marine Fishery Resource Research Center, Tokyo [English abstract, translation by Nakaya ].Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Kenneth J. Goldman
    • 1
  • Scot D. Anderson
    • 2
  • Robert J. Latour
    • 1
  • John A. Musick
    • 1
  1. 1.The College of William and MarySchool of Marine Science, Virginia Institute of Marine ScienceVA
  2. 2.InvernessCA

Personalised recommendations