Environmental Biology of Fishes

, Volume 73, Issue 1, pp 1–8 | Cite as

Turbidity decreases anti-predator behaviour in pike larvae, Esox lucius

  • Maiju LehtiniemiEmail author
  • Jonna Engström-Öst
  • Markku Viitasalo


We tested how algal turbidity and light conditions influence anti-predator behaviour of first-feeding pike. Results showed that pike larvae were able to detect the predator by both chemical and visual signals in turbid water. However, the anti-predator behaviour was reduced in turbid water compared with clear water. Larvae hid in the vegetation in the presence of predator cues more in clear water than in turbid water. The attack rate on zooplankton in clear water was lower in the presence of predator cues, whereas no such difference was detected in turbid water. Both of these results indicate that turbidity acted as a refuge for larvae. Light proved to be an important regulating factor for feeding pike in the absence of predators, demonstrated as lowered attack rates in 50 light level in both clear and turbid water. This indicates that long-term turbidity may be critical for small larvae, which need to feed continuously to survive.


water clarity light intensity predator signals hiding first-feeding fish 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrahams, M., Kattenfeld, M. 1997The role of turbidity as a constraint on predator-prey interactions in aquatic environmentsBehav. Ecol. Sociobiol.40169174CrossRefGoogle Scholar
  2. Bagge, P., Niemi, Å 1971Dynamics of phytoplankton primary production and biomass in Loviisa archipelago (Gulf of Finland)Merentutkimuslaitoksen julkaisu / Havsforskningsinstitutets skrift2331941Google Scholar
  3. Blaxter, J.H.S., Hempel, G. 1963The influence of egg size on herring larvae (Clupea harengus L.)Journal Conseil Permanent International pour l’Exploration de la Mer28211240Google Scholar
  4. Boehlert, G.W., Morgan, J.B. 1985Turbidity enhances feeding abilities of larval Pacific herring (Clupea harengus pallasi)Hydrobiologia123161170CrossRefGoogle Scholar
  5. Bonsdorff E., Blomqvist E., Mattila J., Norkko A. (1997). Coastal eutrophication: causes, consequences and perspectives in the archipelago areas of the northern Baltic Sea. Estuarine, Coastal Shelf Sci. (Supplement A): 63–72Google Scholar
  6. Brönmark, C., Hansson, L.-A. 2000Chemical communication in aquatic systems: an introductionOikos88103109Google Scholar
  7. Casselman, J.M., Lewis, C.A. 1996Habitat requirements of northern pike (Esox lucius)Can. J. Fish. Aquat. Sci.53161174Google Scholar
  8. Chesney, E.J.,Jr. 1989Estimating the food requirements of striped bass larvae Morone saxatilis: effects of light, turbidity and turbulenceMar. Ecol. Prog. Ser.53191200Google Scholar
  9. Craig, J.F., Babaluk, J.A. 1989Relationship of condition of walleye (Stizostedion vitreum) and northern pike (Esox lucius) to water clarity, with special reference to Dauphin Lake, ManitobaCan. J. Fish. Aquat. Sci.4615811586Google Scholar
  10. De Robertis, A., Ryer, C.H., Veloza, A., Brodeur, R.D. 2003Differential effects of turbidity on prey consumption of piscivorous and planktivorous fishCan. J. Fish. Aquat. Sci.6015171526Google Scholar
  11. Eklöv, P., Diehl, S. 1994Piscivore efficiency and refuging prey: the importance of predator search modeOecologia98344353Google Scholar
  12. Fuiman L.A., Werner R.G. (eds.) 2002. Fishery Science. The Unique Contributions of Early Life Stages, Blackwell Publishers, Malden, USA. 336 pp.Google Scholar
  13. Gradall, K.S., Swenson, W.A. 1982Responses of brook trout and creek chubs to turbidityTrans. Am. Fish. Soc.111392395Google Scholar
  14. Gregory, R.S. 1993Effect of turbidity on the predator avoidance behaviour of juvenile chinook salmon (Oncorhynchus tshawytscha)Can. J. Fish. Aquat. Sci.50241246CrossRefGoogle Scholar
  15. Gregory, R.S., Northcote, T.G. 1993Surface, planktonic, and benthic foraging by juvenile chinook salmon (Oncorhynchus tshawytscha) in turbid laboratory conditionsCan. J. Fish. Aquat. Sci.50233240Google Scholar
  16. Hartman, E.J., Abrahams, M.V. 2001Sensory compensation and the detection of predators: the interaction between chemical and visual informationProc. R. Soc. Lond. Biol. Sci.267571575Google Scholar
  17. Hinshaw, J.M. 1985Effects of illumination and prey contrast on survival and growth of larval Yellow Perch (Perca flavescens)Trans. Am. Fish. Soc.114540545Google Scholar
  18. Hällfors, G., Hällfors, S. 1992The Tvärminne collection of algal culturesTvärminne Studies51517Google Scholar
  19. Karjalainen, M. 1999Effect of nutrient loading on the development of the state of the Baltic Sea–an overviewWalter Andée de Nottbeck Foundation Sci. Rep.17135Google Scholar
  20. Lima, S.L., Dill, L.M. 1990Behavioral decisions made under the risk of predation: a review and prospectusCan. J. Zool.68619640CrossRefGoogle Scholar
  21. Macia, A., Abrantes, K.G.S., Paula, J. 2003Thorn fish Terapon jarbua (Forskål) predation on juvenile white brown shrimp Penaeus indicus H. Milne Edwards and brown shrimp Metapenaeus monoceros (Fabricius): the effect of turbidity, prey density, substrate type and pneumatophore densityJ. Exp. Mar. Biol. Ecol.2912956Google Scholar
  22. Mazur, M.M., Beauchamp, D.A. 2003A comparison of visual prey detection among species of piscivorous salmonids: effects of light and low turbiditiesEnviron. Biol. Fish.67397405Google Scholar
  23. Miner, J.G., Stein, R.A. 1993Interactive influence of turbidity and light on larval bluegill (Lepomis macrochirus) foragingCan. J. Fish. Aquat. Sci.50781788CrossRefGoogle Scholar
  24. Miner, J.G., Stein, R.A. 1996Detection of predators and habitat choice by small bluegills: effects of turbidity and alternative preyTrans. Am. Fish. Society12597103Google Scholar
  25. Munsterhjelm, R. 1997The aquatic macrophyte vegetation of flads and gloes, S coast of FinlandActa Bot. Fenn.157168Google Scholar
  26. O’Brien, W.J. 1986Planktivory by freshwater fish: thrust and parry in the pelagiaKerfoot, W.C.Sih, A. eds. Predation Direct and Indirect Impacts on Aquatic Communities.University press of New EnglandHanover316Google Scholar
  27. Peterson, I., Wroblenski, J.S. 1984Mortality rate of fishes in the pelagic ecosystemCan. J. Fish. Aquat. Sci.4111171120CrossRefGoogle Scholar
  28. Skov, C., Berg, S., Jacobsen, L., Jepsen, N. 2002Habitat use and foraging success of 0+ pike (Esox luciusL.) in experimental ponds related to prey fish, water transparency and light intensityEcol. Freshwater Fish1119Google Scholar
  29. Skov, C., Jacobsen, L., Berg, S. 2003Post-stocking survival of 0+ year pike in ponds as a function of water transparency, habitat complexity, prey availability and size heterogeneityJ. Fish Biol.62311322Google Scholar
  30. Urho L. (2002). The importance of larvae and nursery areas for fish production. Ph.D. thesis, University of Helsinki and Finnish Game and Fisheries Institute. Vammalan Kirjapaino, Vammala. 118 ppGoogle Scholar
  31. Urho, L., Hildén, M., Hudd, R. 1990Fish reproduction and the impact of acidification in the Kyrönjoki River estuary in the Baltic SeaEnviron. Biol. Fish.27273283Google Scholar
  32. Utne, A.C.W. 1997The effect of turbidity and illumination on the reaction distance and search time of the marine planktivore Gobiusculus flavescens J. Fish Biol.50926938Google Scholar
  33. Utne-Palm, A.C. 2002Visual feeding of fish in a turbid environment: physical and behavioural aspectsMar. Freshwater Behav. Physiol.35111128Google Scholar
  34. Vinyard, G.L., O’Brien, W.J. 1976Effects of light and turbidity on the reactive distance of bluegill (Lepomis macrochirus)J. Fish. Re. Board Can.3328452849Google Scholar
  35. Wootton R.J. (1994). Ecology of Teleost Fishes. Chapman Hall, London UK. pp. 404Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Maiju Lehtiniemi
    • 1
    • 2
    • 2
    Email author
  • Jonna Engström-Öst
    • 1
    • 2
  • Markku Viitasalo
    • 1
  1. 1.Finnish Institute of Marine ResearchHelsinkiFinland
  2. 2.Tvärminne Zoological StationUniversity of HelsinkiHankoFinland

Personalised recommendations