Advertisement

Environmental Biology of Fishes

, Volume 72, Issue 1, pp 1–12 | Cite as

Home range behaviour of the monogamous Australian seahorse, Hippocampus whitei

  • Amanda C. J. Vincent
  • Karl L. Evans
  • A. Dale Marsden
Article

Abstract

We provide a quantitative account of local movements in the monogamous Australian species Hippocampus whitei, as a rare report of home range size in fishes living in seagrass habitats. Our study took place in shallow Posidonia seagrass beds in Port Jackson (Sydney Harbour), principally during January to March. Daily monitoring of individual seahorses during underwater observations revealed that both sexes maintained small and apparently undefended home ranges for several breeding cycles at least. Female home ranges were significantly larger than males, when analysed by both the minimum convex polygon and grid cell methods. Home range size was not correlated with either body size or seahorse density. Presumably, home ranges were small in H. whitei because camouflage (to avoid predation and to capture prey), mate fidelity and parental brooding meant they accrued little benefit (and potentially considerable cost) from moving more extensively. Sex differences in home range size may arise from constraints associated with male pregnancy. These fish are among the most sedentary of vertebrates, with relatively small home ranges equalled only by coral reef species. In terms of their conservation, relatively small protected areas may be sufficient to support breeding populations of H. whitei although that limited movement may result in considerable delays in the recolonisation of depleted areas.

Keywords

syngnathidae sex differences territory spatial behaviour seagrass conservation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barlow, G.W. 1984Patterns of monogamy among teleost fishesArch. Fischereiwiss.3575123Google Scholar
  2. Burt, W.H. 1943Territoriality and home range concepts as applied to mammalsJ. Mammal.24346332Google Scholar
  3. Carpenter, F.L. 1987Introduction to the symposiumTerritoriality: conceptual advances in field and theoretical studies. Am. Zool.27387399Google Scholar
  4. Clarke, M.F., Burke da Silva, K., Lair, H., Pocklington, R., Kramer, D.L., McLaughlin, R.L. 1993Site familiarity affects escape behaviour of the eastern chipmunk, Tamias striatusOikos66533537Google Scholar
  5. Cuthill, I.C., Houston, A.I. 1997Managing time and energyKrebs, J.R.Davies, N.B. eds. Behavioural Ecology: An Evolutionary ApproachBlackwell ScienceOxford, U.K97120Google Scholar
  6. Dauwe, B. 1992. Ecology of the seahorse Hippocampus reidi on the coral reefs of Bonaire (N.A.): habitat use, reproduction and interspecific interactions. (Ecologie van het zeepaardje Hippocampus reidi (Syngnathidae) op het koraalrif van Bonaire (N.A.): Habitatgebruik, reproductie en interspecifieke interacties.) M.Sc. Thesis, Rijksuniversiteit Groningen, The Netherlands. 65 pp.Google Scholar
  7. Davies, N.B., Houston, A.I. 1984Territory economicsKrebs, J.R.Davies, N.B. eds. Behavioural Ecology: An Evolutionary ApproachBlackwell ScienceOxford, U.K148169Google Scholar
  8. Dill, L.M., Ydenberg, R.C., Fraser, A.H.G. 1983Food abundance and territory size in juvenile coho salmon (Oncorhynchus kisutch)Can. J. Zool.5918011809CrossRefGoogle Scholar
  9. Foster, S.J. & A.C.J. Vincent. 2004. The life history and ecology of seahorses, Hippocampus spp.: implications for conservation and management. J. Fish Biol. (in press).Google Scholar
  10. Froese, R. & D. Pauly. 2002. FishBase. World Wide Web electronic publication. www.fishbase.org.Google Scholar
  11. Grant, J.W.A. 1997TerritorialityGodin, J.-G.J. eds. Behavioural Ecology of Teleost FishesOxford University PressOxford, U.K81103Google Scholar
  12. Grant, J.W.A., Chapman, C.A., Richardson, K.S. 1992Defended versus undefended home range size of carnivores, ungulates and primatesBehav. Ecol. Sociobiol.31149161Google Scholar
  13. Gronell, A.M. 1984Courtship, spawning and social organisation of the pipefish, Corythoichthys intestinalis (Pisces: Syngnathidae) with notes on two congeneric speciesZ. Tierpsychol.65124Google Scholar
  14. Harestad, A.S., Bunnell, F.L. 1979Home range and body weight–a reevaluationEcology60389402Google Scholar
  15. Harris, S., Cresswell, W.J., Forde, P.G., Trewhella, W.J., Woollard, T., Wray, S. 1990Home-range analysis using radio-tracking data–a review of problems and techniques particularly as applied to the study of mammalsMammal Rev.2097123Google Scholar
  16. Harvey, P.H., Clutton-Brock, T.H. 1981Primate home-range size and metabolic needsBehav. Ecol. Sociobiol.8151155Google Scholar
  17. Hixon, M.A. 1987Territory area as a determinant of mating systemsAm. Zool.27229247Google Scholar
  18. Hixon, M.A. 1991Predation as a process structuring coral reef fish communitiesSale, P.F. eds. The Ecology of Fishes on Coral ReefsAcademic PressSan Diego, California, U.S.A475508Google Scholar
  19. Itzkowitz, M. 1974A behavioural reconnaissance of some Jamaican reef fishesZool. J. Linnean Soc.5587118Google Scholar
  20. James, P.L., Heck, K.L. 1994The effects of habitat complexity and light intensity on ambush predation within a simulated seagrass habitatJ. Exp. Mar. Biol. Ecol.176187200Google Scholar
  21. Jones, A.G., Avise, J.C. 2001Mating systems and sexual selection in male-pregnant pipefishes and seahorses: insights from microsatellite-based studies of maternityJ. Heredity92150158Google Scholar
  22. Kelt, D.A., Van Vuren, D. 1999Energetic constraints and the relationship between body size and home range area in mammalsEcology80337340Google Scholar
  23. Kramer, D.L., Chapman, M.R. 1999Implications of fish home range size and relocation for marine reserve functionEnviron. Biol. Fishes556579Google Scholar
  24. Kuiter, R.H. 2001Revision of the Australian seahorses of the genus Hippocampus (Sygnathiformes: Syngnathidae) with a description of nine new speciesRec. Aust. Museum53293340Google Scholar
  25. Kvarnemo, C., Moore, G.I., Jones, A.G., Nelson, W.S., Avise, J.C. 2000Monogamous pair bonds and mate switching in the Western Australian seahorse Hippocampus subelongatusJ. Evol. Biol.13882888Google Scholar
  26. Larson, R.J. 1980Influence of territoriality on adult density in two rockfishes of the genus SebastesMar. Biol.58123132Google Scholar
  27. Lima, S.L., Dill, L.M. 1989Behavioural decisions made under the risk of predation: a review and prospectusCan. J. Zool.68619640CrossRefGoogle Scholar
  28. Lott, D.F. 1984Intraspecific variation in the social systems of wild vertebratesBehaviour88266325Google Scholar
  29. Lott, D.F. eds. 1991Intraspecific Variation in the social systems of Wild VertebratesCambridge University PressCambridge, U.K.233233Google Scholar
  30. Lourie, S.A., Vincent, A.C.J., Hall, H.J. 1999Seahorses: An Identification Guide to the World’s Species and Their ConservationProject SeahorseLondon, U.K.214214Google Scholar
  31. Mace, G.M., Harvey, P.H., Clutton-Brock, T.H. 1983Vertebrate home-range size and energetic requirementsSwingland, I.R.Greenwood, P.J. eds. The Ecology of Animal MovementClarendon PressOxford, U.K3253Google Scholar
  32. Masonjones, H.D. 2001The effects of social context and reproductive status on the metabolic rates of dwarf seahorses (Hippocampus zosterae)Comp. Biochem. Physiol. A129541555Google Scholar
  33. Matsumoto, K., Yanagisawa, Y. 2001Monogamy and sex role reversal in the pipefish Corythoichthys haematopterusAnimal Behav.61163170Google Scholar
  34. McCarthy, M.A., Lindenmayer, D.B. 1998Population density and movement data for predicting mating systems of arboreal marsupialsEcol. Modell.109193202Google Scholar
  35. McNab, B.K. 1963Bioenergetics and the determination of home range sizeAm. Nat.97133140Google Scholar
  36. Middleton, M.J., Bell, J.D., Burchmore, J.J., Pollard, D.A., Pease, B.C. 1984Structural differences in the fish communities of Zostera capricorni and Posidonia australis seagrass meadows in Botany Bay, New South WalesAquat. Botany1889109Google Scholar
  37. Minns, C.K. 1995Allometry of home range size in lake and river fishesCan. J. Fisheries Aquat. Sci.5214991508Google Scholar
  38. Moreau, M.-A. & A.C.J. Vincent. 2004. Social structure and space use in a wild population of the Australian short-headed seahorse, Hippocampus breviceps Peters 1869. Mar. Freshwater Res. (in press).Google Scholar
  39. Munro, J.L. 1982Estimation of the parameter of the von Bertlanffy growth equation from recapture data at variable time intervalsJ. Cons. Int. Explor Mer254749Google Scholar
  40. Neat, F.C., Huntingford, F.A., Beveridge, M.C. 1998Fighting and assessment in male cichlid fish: the effects of asymmetries in gonadal state and body sizeAnimal Behav.55883891Google Scholar
  41. Nijhoff, M. 1993. Reproductive ecology of the seahorse Hippocampus reidi on a Bonaire coral reef. (Voortplantingsecologie van het zeepaardje Hippocampus reidi op het koraalrif van Bonaire.) M.Sc. thesis, Rijksuniversiteit Groningen, the Netherlands. 49 pp.Google Scholar
  42. Norman, M.D., Jones, G.P. 1984Determinants of territory size in the pomacentrid reef fish, Parma victoriaeOecologia616069Google Scholar
  43. Nursall, J.R. 1977Territoriality in redlip blennies (Ophioblennius atlanticus–Pisces: Blenniidae)J. Zool. (London)182205223Google Scholar
  44. Paulus, T. 1991. Comparative systematic and ecological studies of syntopic pipefishes (Syngnathidae) in the Red Sea. p. 62. In: Seventh International Ichthyology Congress of the European Ichthyological Union: ‘The Threatened World of Fish’. Bulletin Zoologisch Museum, Den Haag, The Netherlands.Google Scholar
  45. Perante, N.C., Pajaro, M.G., Meeuwig, J.J., Vincent, A.C.J. 2002Biology of a seahorse species Hippocampus comes in the central PhilippinesJ. Fish Biol.60821837Google Scholar
  46. Roberts, C.M., Ormon, F.G. 1992Butterflyfish social behaviour, with special reference to the incidence of territoriality: a reviewEnviron. Biol. Fishes347993Google Scholar
  47. Sale, P.F. 1975Patterns of use of space in a guild of territorial reef fishesMar. Biol.298997Google Scholar
  48. Sale, P.F. 1978Reef fishes and other vertebrates: a comparison of social structuresReese, E.S.Ligher, F.J. eds. Contrasts in BehaviourWiley and SonsNew York, U.S.A313346Google Scholar
  49. Schoener, T.W. 1968Sizes of feeding territories among birdsEcology49123141Google Scholar
  50. Schoener, T.W., Schoener, A. 1982Intraspecific variation in home-range size in some Anolis lizardsEcology63809823Google Scholar
  51. Sih, A. 1987Predators and prey lifestyles: an evolutionay and ecological overviewKerfoot, W.C.Sih, A. eds. Predation: Direct and Indirect Impacts on Aquatic CommunitiesUniversity Press of New EnglandHanover, New Hampshire, U.S.A203224Google Scholar
  52. Sokal, R.R., Rohlf, F.J. 1981Biometry, W.HFreeman and CompanyNew York, U.S.A.219219Google Scholar
  53. Taylor, J.N., Courtenay, W.R., McCann, J.A. 1984Known impacts of exotic fishes in the continental United StatesCourtenay, W.R.,Jr.Stauffer, J.R.,Jr. eds. Distribution, Biology and Management of Exotic FishesThe Johns Hopkins University PressBaltimore, Maryland, U.S.AGoogle Scholar
  54. Thom, R., Miller, B., Kennedy, M. 1995Temporal patterns of grazers and vegetation in a temperate seagrass systemAquat. Botany50201205Google Scholar
  55. Thresher, R.E. eds. 1984Reproduction in Reef FishesTFH PublicationsNeptune City, New Jersey, U.S.A.399399Google Scholar
  56. Tricas, T.C. 1989Determinants of feeding territory size in the corallivorous butterflyfish, Chaetodon multicinctusAnimal Behav.37830841Google Scholar
  57. Turner, F.B., Jennrich, R.I., Weintraub, J.D. 1969Home ranges and body size of lizardsEcology5010761081Google Scholar
  58. Vincent, A., Ahnesjo, I., Berglund, A. 1994Operational sex ratios and behavioural sex differences in a pipefish populationBehav. Ecol. Sociobiol.34435442Google Scholar
  59. Vincent, A.C.J. 1990. Reproductive ecology of seahorses. Ph.D. thesis, Cambridge University. 109 pp.Google Scholar
  60. Vincent, A.C.J. 1994Operational sex ratios in seahorsesBehaviour128153167Google Scholar
  61. Vincent, A.C.J. eds. 1996The International Trade in SeahorsesTRAFFIC InternationalCambridge, U.K.163163Google Scholar
  62. Vincent, A.C.J., Berglund, A., Ahnesjo, I. 1995Reproductive ecology of five pipefish species in one eelgrass meadowEnviron. Biol. Fishes44347361Google Scholar
  63. Vincent, A.C.J., Marsden, A.D., Evans, K.L., Sadler, L.S. 2004Temporal and spatial opportunities for polygamy in a monogamous seahorse, Hippocampus whiteiBehaviour141141156Google Scholar
  64. Vincent, A.C.J., Sadler, L.M. 1995Faithful pair bonds in wild seahorses, Hippocampus whiteiAnimal Behav.5015571569Google Scholar
  65. Walsh, C.J., Mitchell, B.D. 1998Factors associated with variations in abundance of epifaunal caridean shrimps between and within estuarine seagrass meadowsMar. Freshwater Res.49769777Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Amanda C. J. Vincent
    • 1
    • 3
  • Karl L. Evans
    • 2
    • 4
  • A. Dale Marsden
    • 1
    • 5
  1. 1.Project Seahorse, Department of BiologyMcGill UniversityMontrealCanada
  2. 2.Edward Grey Institute for Ornithology, Department of ZoologyUniversity of OxfordUK
  3. 3.Project Seahorse, Fisheries CentreThe University of British ColumbiaVancouverCanada
  4. 4.Biodiversity & Macroecology Group, Department of Animal and Plant SciencesUniversity of SheffieldUK
  5. 5.Fisheries Economics Research Unit, Fisheries CentreThe University of British ColumbiaVancouverCanada

Personalised recommendations