Environmental Biology of Fishes

, Volume 72, Issue 4, pp 415–427 | Cite as

Variations in the dietary compositions of morphologically diverse syngnathid fishes

  • Alan J. KendrickEmail author
  • Glenn A. Hyndes


We examined the diets of 12 morphologically diverse syngnathid species in shallow seagrass-dominated marine waters of south-western Australia to determine whether they differed among species that varied in body form, size and snout morphology, and in particular whether species with long snouts ingested more mobile prey. Although all species consume mainly small crustaceans, the dietary compositions of these species often vary markedly. We suggest that these differences are related to factors that influence both their foraging capabilities and/or locations. Those species with long snouts (e.g. the common seadragon Phyllopteryx taeniolatus and long-snouted pipefish Vanacampus poecilolaemus) consume far more relatively mobile prey than species with short snouts. Species with short snouts (e.g. the pug-nosed pipefish Pugnaso curtirostris and Macleay’s crested pipefish Histiogamphelus cristatus) mainly consume slow moving prey. Spotted pipefish, Stigmatopora argus, and wide-bodied pipefish, Stigmatopora nigra, restrict their diets to planktonic copepods, probably because their small gape size limits their ability to feed on alternative larger prey. Both the short-snouted seahorse, Hippocampus breviceps, and West Australian seahorse, Hippocampus subelongatus, ingest mainly slow-moving prey, even though the latter species possesses a moderately long snout. This may reflect the fact that seahorses are weak swimmers that anchor themselves to vegetation or the substrate with a strongly prehensile tail and rarely venture into open water to pursue mobile prey. In contrast, the relatively large P. taeniolatus, which resides above, rather than within, the macrophyte canopy, consumes mysids, which aggregate in open water above the seabed. Those pipefishes with characters that imply relatively enhanced mobility, such as well developed caudal fins and non-prehensile tails, are trophically diverse, suggesting that they are able to feed either on the sediment or phytal surfaces or in the water column.


pipefish seahorse seadragon trophic ecology habitat 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barnes, R.D. 1974Invertebrate ZoologyW.B. SaundersPhiladelphia870Google Scholar
  2. Bell, J.D., Harmelin-Vivien, M. 1983Fish fauna of French Mediterranean Posidonia oceanica seagrass meadows2 Feeding habits. Tethys11114Google Scholar
  3. Bennet, B.A., Branch, G.M. 1990Relationships between production and consumption of prey species by resident fish in the Bot, a cool temperate South African estuaryEstuar. Coast. Shelf Sci.31139155CrossRefGoogle Scholar
  4. Bergert, B.A., Wainwright, P.C. 1997Morphology and kinematics of prey capture in the syngnathid fishes Hippocampus erectus and Syngnathus floridaeMar. Biol.127563570CrossRefGoogle Scholar
  5. Branch, G.M. 1966Contributions to the functional morphology of fishes Part III The feeding mechanism of Syngnathus acus LinnaeusZoologia Africanensis26989Google Scholar
  6. Brook, I.M. 1977Trophic relationships in a seagrass community (Thalassia testudinum), in Card Sound, Florida Fish diets in relation to macrobenthic and cryptic Faunal abundanceTrans. Am. Fish. Soc.106219229CrossRefGoogle Scholar
  7. Burchmore, J.J., Pollard, D.A., Bell, J.D. 1984Community structure and trophic relationships of the fish fauna of an estuarine Posidonia australis seagrass habitat in Port Hacking, New South WalesAquat. Bot.187187CrossRefGoogle Scholar
  8. Campolmi, M., Franzoi, P., Mazzola, A. 1996Observations on pipefish (Syngnathidae) biology in the Stagnone lagoon (west Sicily)Publications Especial de l’ Institut Espana de Oceanografie21205209Google Scholar
  9. Clarke, K.R. 1993Non-parametric multivariate analyses of changes in community structureAust. J. Ecol.18117143CrossRefGoogle Scholar
  10. Clarke, K.R., Warwick, R.M. 1994Change in Marine Communities: An Approach to Statistical Analysis and InterpretationPlymouth Marine LaboratoryPlymouth144Google Scholar
  11. Consi, T.R., Seifert, P.A., Triantafyyllou, M.S., Edelman, E.R. 2001The dorsal fin engine of the seahorse (Hippocampus sp.)J. Morphol.2488097CrossRefPubMedGoogle Scholar
  12. Dawson, C.E. 1985Indo-Pacific PipefishesGulf Coast Research LaboratoryOcean Springs, Mississipi230Google Scholar
  13. Edgar, G.J. 2000Australian marine life: The plants and animals of temperate waters, Revised editionReed New HollandSydney544Google Scholar
  14. Edgar, G.J., Shaw, C. 1995The production and trophic ecology of shallow-water fish assemblages in southern Australia II Diets of fishes and trophic relationships between fishes and benthos at Western Port, VictoriaJ. Exp. Mar. Biol. Ecol.19483106CrossRefGoogle Scholar
  15. Ferry-Graham, L.A., Wainwright, P.C., Bellwood, D.R. 2001Prey capture in long-jawed butterflyfishes (Chaetodontidae): The functional basis of novel feeding habits JExp. Mar. Biol. Ecol.256167184CrossRefGoogle Scholar
  16. Field, J.G., Clarke, K.R., Warwick, R.M. 1982A practical strategy for analysing multispecies distributional patternsMar. Ecol.-Prog. Ser.83752CrossRefGoogle Scholar
  17. Flynn, A.J., Ritz, D.A. 1999Effect of habitat complexity and predatory style on the capture success of fish feeding on aggregated preyJ. Mar. Biol. Assoc. U.K.79487494CrossRefGoogle Scholar
  18. Franzoi, P., Maccagnani, R., Rossi, R., Ceccherelli, V.U. 1993Life cycles and feeding habits of Syngnathus taenionotus and S abaster (Pisces, Syngnathidae) in a brackish bay of the Po River delta (Adriatic Sea)Mar. Ecol. Prog. Ser.977181CrossRefGoogle Scholar
  19. Fulton, C.J., Bellwood, D.R., Wainwright, P.C. 2001The relationship between swimming ability and habitat use in wrasses (Labridae)Mar. Biol.1392533CrossRefGoogle Scholar
  20. Gerking, S.D. 1994Feeding Ecology of FishAcademic PressSydney. 416 ppGoogle Scholar
  21. Gomon, M.F., J.C.M. Glover, & R.H. Kuiter. 1994. The Fishes of Australia’s South Coast State Print, Adelaide. 992 pp.Google Scholar
  22. Groves, P. 1998Leafy sea dragonsScientific American2795459CrossRefGoogle Scholar
  23. Hale, M.E. 1996Functional morphology of ventral tail bending and prehensile abilities of the seahorse, Hippocampus kudaJ. Morphol.2275165CrossRefGoogle Scholar
  24. Hayek, L., Buzas, M.A. 1997Surveying Natural PopulationsColumbia University PressNew York563Google Scholar
  25. Hicks, G.R.F., Coull, B.C. 1983The ecology of marine meiobenthic harpacticoid copepodsOceanogr. Mar. Biol. Annu. Rev.2167175Google Scholar
  26. Howard, R.K., Koehn, J.D. 1985Population dynamics and feeding ecology of pipefish (Syngnathidae) associated with eelgrass beds of Western Port, VictoriaAust. J. Mar. Freshwater Res.36361370CrossRefGoogle Scholar
  27. Huh, S., Kitting, C.L. 1985Trophic relationships among concentrated populations of small fishes in seagrass meadowsJ. Exp. Mar. Biol. Ecol.922943CrossRefGoogle Scholar
  28. Hyndes, G.A., Platell, M.E., Potter, I.C. 1997Relationships between diet and body size, mouth morphology, habitat and movements of six sillaginid species in coastal waters: implications for resource partitioningMar. Biol.128585598CrossRefGoogle Scholar
  29. Hyndes, G.A., Kendrick, A.J., MacArthur, L.D., Stewart, E. 2003Differences in species- and size-composition of fish assemblages in three distinct seagrass habitats with differing structural complexityMar. Biol.14211951206Google Scholar
  30. Hyslop, E.J. 1980Stomach contents analysis–a review of methods and their applicationJ. Fish Biol.17411429CrossRefGoogle Scholar
  31. James, P.L., Heck, K.L. 1994The effects of habitat complexity and light intensity on ambush predation within a simulated seagrass habitatJ. Exp. Mar. Biol. Ecol.176187200CrossRefGoogle Scholar
  32. Jenkins, G.P., Sutherland, C.R. 1997The influence of habitat structure on nearshore fish assemblages in a southern Australian embayment: Colonisation and turnover rate of fishes associated with artificial macrophyte beds of varying physical structureJ. Exp. Mar. Biol. Ecol.218103125CrossRefGoogle Scholar
  33. Jernakoff, P., Brearley, A., Nielsen, J. 1996Factors affecting grazer–epiphyte interactions in temperate seagrass meadowsOceanogr. Mar. Biol. Annu. Rev.34109162Google Scholar
  34. Keast, A., Webb, D. 1966Mouth and body form relative to feeding ecology in the fish fauna of a small lake, Lake Opinicon, OntarioJ. Fish. Res. Board Canada2318451874Google Scholar
  35. Kendrick, A.J., Hyndes, G.A. 2003Patterns in the abundance and size-distribution of syngnathid fishes among habitats in a seagrass-dominated marine environmentEstuar. Coast. Shelf Sci.57631640CrossRefGoogle Scholar
  36. Klumpp, D.W., Howard, R.K., Pollard, D.A. 1989Trophodynamics and nutritional ecology of seagrass communitiesLarkum, A.W.D.McComb, A.J.Shepherd, S.A. eds. Biology of Seagrasses, Aquatic Plant Studies 2ElsevierAmsterdam394457Google Scholar
  37. Kuiter, R. 2000Seahorses, Pipefish and Their RelativesTMC PublishingChorleywood240Google Scholar
  38. Livingston, R.J. 1982Trophic organisation of fishes in a coastal seagrass systemMar. Ecol. Prog. Ser.7112CrossRefGoogle Scholar
  39. Lourie, S., Vincent, A.C.J., Hall, H. 1999Seahorses An Identification Guide to the World’s Species and Their ConservationProject SeahorseLondon214Google Scholar
  40. Main, K.L. 1987Predator avoidance in seagrass meadows: prey behaviour, microhabitat selection, and cryptic colourationEcology68170180CrossRefGoogle Scholar
  41. Mauchline, J. 1980The biology of mysids and euphausiidsAdv Mar Biol181677Google Scholar
  42. Mauchline, J. 1998The biology of calanoid copepodsAdv Mar Biol331707CrossRefGoogle Scholar
  43. Motta, P.J., Clifton, K.B., Hernandez, P., Eggold, B.T., Giordano, S.D., Wilcox, R. 1995Feeding relationships among nine species of seagrass fishes of Tampa Bay, FloridaBull. Mar. Sci.56185200Google Scholar
  44. Muller, M., Osse, J.W.M. 1984Hydrodynamics of suction feeding in fishTrans. Zool. Soc. Lond.3751135Google Scholar
  45. Platell, M.E., Potter, I.C. 1999Partitioning of habitat and prey by abundant and similar sized species of the Triglidae and Pempherididae (Teleostei) in coastal watersEstuar. Coast. Shelf Sci.48235252CrossRefGoogle Scholar
  46. Platell, M.E., Potter, I.C., Clarke, K.R. 1998Do the habitats, mouth morphology and diets of the mullids Upenichthys stotti and U lineatus in coastal waters of south-western Australia differ?J. Fish Biol.52398418Google Scholar
  47. Quinn, G.P., Keough, M.J. 2002Experimental design and data analysis for biologistsCambridge University PressCambridge556Google Scholar
  48. Ritz, D.A. 2000Is social aggregation in aquatic crustaceans a strategy to conserve energyCan. J. Fish. Aquat. Sci.57 (Suppl. 3)5967CrossRefGoogle Scholar
  49. Ritz, D.A., Osborn, J.E., Ocken, A.E.J. 1997Influence of food and predatory attack on mysid swarm dynamicsJ. Mar. Biol. Assoc. U.K.73142Google Scholar
  50. Ryer, C.H. 1988Pipefish foraging: Effects of fish size, prey size and altered habitat complexityMar. Ecol. Prog. Ser.483745CrossRefGoogle Scholar
  51. Ryer, C.H., Orth, R.J. 1987Feeding ecology of the northern pipefish, Syngnathus fuscus, in a seagrass community of the lower Chesapeake BayEstuaries10330336CrossRefGoogle Scholar
  52. Singarajah, K.V. 1969Escape reactions of zooplankton: The avoidance of a pursuing siphon tubeJ. Exp. Mar. Biol. Ecol.3171178CrossRefGoogle Scholar
  53. Steffe, A.S., Westoby, M., Bell, J.D. 1989Habitat selection and diet in two species of pipefish from seagrass: Sex differencesMar. Ecol. Prog. Ser.552330CrossRefGoogle Scholar
  54. Teixeira, R.L., Musick, J.A. 1995Trophic ecology of two congeneric pipefishes (Syngnathidae) of the lower York River, VirginiaEnviron. Biol. Fish.43295309CrossRefGoogle Scholar
  55. Tipton, K., Bell, S.S. 1988Foraging patterns of two syngnathid fishes: Importance of harpacticoid copepodsMar. Ecol. Prog. Ser.473143CrossRefGoogle Scholar
  56. Titelman, J. 2001Swimming and escape behaviour of copepod nauplii: Implications for predator-prey interactions among copepodsMar. Ecol. Prog. Ser.203203213CrossRefGoogle Scholar
  57. Wainwright, P.C. 1988Morphology and ecology: Functional basis of feeding constraints in Caribbean labrid fishesEcology69635645CrossRefGoogle Scholar
  58. Wainwright, P.C., Richard, B.A. 1995Predicting patterns of prey use from morphology of fishesEnviron. Biol. Fish.4497113CrossRefGoogle Scholar
  59. Werner, E.E., Hall, D.J. 1974Optimal foraging and the size selection of prey by the bluegill sunfish (Lepomis macrochirus)Ecology5510421052CrossRefGoogle Scholar
  60. Woods, C.M. 2002Natural diet of the seahorse Hippocampus abdominalisNew Zealand J. Mar. Freshwater Res.36655660CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Centre for Fish and Fisheries Research, School of Biological Sciences and BiotechnologyMurdoch UniversityMurdochAustralia
  2. 2.Department of Conservation and Land ManagementMarine Conservation BranchFremantleAustralia
  3. 3.Centre for Ecosystem Management, School of Natural SciencesEdith Cowan UniversityJoondalupAustralia

Personalised recommendations