Environmental Biology of Fishes

, Volume 71, Issue 4, pp 353–364 | Cite as

Partitioning of food resources among Sillago japonica, Ditremma temmincki, Tridentiger trigonocephalus, Hippocampus japonicus and Petroscirtes breviceps in an eelgrass, Zostera marina, bed

  • Seok Nam Kwak
  • Sung-Hoi Huh
  • David W. Klumpp


We carried out dietary analysis on five numerically abundant fishes, Sillago japonica, Ditremma temmincki, Tridentiger trigonocephalus, Hippocampus japonicus and Petroscirtes breviceps in an eelgrass bed in Kwangyang Bay, Korea. Comparisons between species demonstrated that the dietary composition of each fish species was significantly different from that of every other species. Although gammarid amphipods and caprellid amphipods were consumed by all species, their individual contributions to each species' diet varied. Furthermore, polychaetes contributed to the diets of S. japonica and T. trigonocephalusand crab larvae were consumed byD. temmincki. Algae and eelgrass were not consumed by four fish species and made only a minimal contribution to the diet of P. breviceps. The diet of each fish species except H. japonicus underwent size-related changes; smaller fishes consumed gammarid amphipods, mysids and copepods, while larger fishes ate polychaetes, gastropods, isopods and other fishes. Differences in the prey organisms consumed of each individual species could be often related to differences in mouth length and width. S. japonica, D. temmincki, T. trigonocephalus, and P. breviceps underwent also a significant diel changes that could be related to differences in foraging behavior and/or prey availability. Thus, use of vision to detect prey would account for the greater daytime consumption of copepods by S. japonica and of crab larvae by D. temmincki, whereas the nocturnal emergence of gammarid amphipods, polychaetes and isopods from the substrate explained their greater consumption by S. japonica, D. temmincki, T. trigonocephalusand P. breviceps at night. Dietary breadth was greater for species with larger mouth dimensions.

diets mouth size ontogeny diel variation dietary breadth 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, S. M. 1976. The ecology of eelgrass, Zostera marina (L. ), fish communities. 1. Structural analysis. J. Exp. Mar. Biol. Ecol. 22: 269-291.Google Scholar
  2. Bergert, B. A. & P. C. Wainwright. 1997. Morphology and kinematics of prey capture in the syngnathid fishes Hippo-campus erectus and Syngnathus floidae. Mar. Biol. 127: 563-570.Google Scholar
  3. Edgar, G. J. & C. Shaw. 1995. The production and trophic ecology of shallow-water fish assemblages in southern Aus-tralia. II. Diets of fishes and trophic relationships between shes and benthos at Western Port, Victoria. J. Exp. Mar. Biol. Ecol. 194: 83-102.Google Scholar
  4. Gibson, R. N. & I. A. Ezzi. 1987. Feeding relationships of a demersal fish assemblage on the wet coast of Scotland. J. Fish Biol. 31: 55-69.Google Scholar
  5. Go, Y. B. & S. H. Cho. 1997. Study on the fish community in the seagrass belt around Cheju Island I. Species composition and seasonal variations of fish community. Korean J. Ichthyol. 9: 48-60.Google Scholar
  6. Gunn, J. S. & N. E. Milward. 1985. The food, feeding habits and feeding structures of the whiting species Sillago sihama (Forsskal)and Sillago analis Whitley from Townsville, North Queensland. Austr. J. Fish. Biol. 26: 411-427.Google Scholar
  7. Hayase, S. & S. Tanaka. 1980. Feeding ecology of three species of embiotocid fishes in the Zostera marina belt of Odawa Bay. Bull. Jpn. Soc. Sci. Fish. 46: 1469-1476.Google Scholar
  8. Hayase, S. & S. Tanaka. 1981. Population. uctuation of three species of embiotocid fishes in the Zostera marina Belt of Odawa Bay. Bull. Jpn. Soc. Sci. Fish. 47: 713-717.Google Scholar
  9. Horinouchi, M., M. Sano, T. Taniguchi & M. Shimizu. 1998. Food and microhabitat resource use by Rudarius ercodes and Ditremma temmincki coexisting in a Zostera beds at Abu-ratsubo, Central Japan. Fish. Sci. 64: 563-568.Google Scholar
  10. Huh, S. H. & S. N. Kwak. 1997a. Species composition and sea-sonal variations of fishes in eelgrass (Zostera marina )bed in Kwangyang Bay. Korean J. Ichthyol. 9: 202-220.Google Scholar
  11. Huh, S. H. & S. N. Kwak. 1997b. Feeding habits of Syngnathus schlegeli in eelgrass (Zostera marina )bed in Kwangyang Bay. J. Korean Fish. Soc. 30: 896-902.Google Scholar
  12. Huh, S. H. & S. N. Kwak. 1998a. Feeding habits of Sebastes inermis in the eelgrass (Zostera marina )bed in Kwangyang Bay. J. Korean Fish. Soc. 31: 168-175.Google Scholar
  13. Huh, S. H. & S. N. Kwak. 1998b. Feeding habits of juvenile Acanthopagrus schlegeli in the eelgrass (Zostera marina )bed in Kwangyang Bay. Korean J. Ichthyol. 10: 168-175.Google Scholar
  14. Huh, S. H. & S. N. Kwak. 1998c. Feeding habits of Acentrogo-bius p. aumii in the eelgrass (Zostera marina )bed in Kwangyang Bay. Korean J. Ichthyol. 10: 24-31.Google Scholar
  15. Hyndes, G. A., M. E. Platell & I. C. Potter. 1997. Relationships between diet and body size, mouth morphology, habitat and movements of six sillaginid species in coastal waters: implications for resource partitioning. Mar. Biol. 128: 585-598.Google Scholar
  16. Kim, I. S. & Y. J. Kang. 1993. Coloured Fishes of Korea, Academy Publishing Co, Seoul. 478 pp.Google Scholar
  17. Klumpp, D. W., R. K. Howard & D. A. Pollard. 1989. Tropho-dynamics and nutritional ecology of seagrass communities. pp. 394-437. In: A. W. D. Larkum, A. J. McComb & S. A. Shepherd (eds. ) Biology of Seagrasses, Elsevier, Amsterdam.Google Scholar
  18. Krebs, C. J. 1989. Ecological Methodology, Harper and Row, New York. 654 pp.Google Scholar
  19. Kwak, S. N. 1997. Biotic communities and feeding ecology of sh in Zoatera marina bed off Dae Island in Kwangyang Bay. Ph. D. Thesis, Pukyong University, Pusan. 411 pp.Google Scholar
  20. Kwak, S. N., D. W. Klumpp & S. H. Huh. 2001. Feeding habits of Trumpeter Whiting, Sillago maculata in the tropical sea-grass beds of Cockle Bay, Queensland. Korean J. Ichthyol. 13: 223-229.Google Scholar
  21. Lee, T. W., H. T. Moon, H. B. Hwang, S. H. Huh & D. J. Kim. 2000. Seasonal variation in species composition of fishes in the eelgrass beds in Angol Bay of the Southern Coast of Korea. J. Korean Fish. Soc. 33: 439-447.Google Scholar
  22. Livingstone, R. J. 1982. Trophic organization of fishes in a coastal seagrass system. Mar. Ecol. Prog. Ser. 7: 1-12.Google Scholar
  23. McKay, R. J. 1985. A revision of the fishes of the family Silla-ginidae. Mem. Queensland Museum 22: 1-73.Google Scholar
  24. Motta, P. J., K. B. Clifton, P. Hernandez, B. T. Eggold, S. D. Giordano & R. Wilcox. 1995. Feeding relationships among nine species of seagrass fishes of Tampa Bay, Florida. Bull. Mar. Sci. 56: 185-200.Google Scholar
  25. Robertson, A. I. 1984. Trophic interactions between the fish fauna and macrobenthos of an eelgrass community in Wes-tern Port, Victoria. Aquat. Bot. 18: 135-153.Google Scholar
  26. Robertson, A. I. & R. K. Howard. 1978. Diel trophic interac-tions between vertically migrating zooplankton and their fish predators in an eelgrass community. Mar. Biol. 48: 207-213.Google Scholar
  27. Robertson, A. I. & D. W. Klumpp. 1983. Feeding habits of the southern Australian Gar fish Hyporhampus melanochir: a diurnal herbivore and nocturnal carnivore. Mar. Ecol. Prog. Ser. 10: 197-201.Google Scholar
  28. Schoener, T. W. 1970. Nonsynchronous spatial overlap of liz-ards in patchy habitats. Ecology 51: 408-418.Google Scholar
  29. Scott, J. K., R. Dybdahl & W. F. Wood. 1986. The ecology of Posidonia seagrass fish communities in Cockburn Sound, Western Australia. West. Aust. Dept. Conserv. Environ. Technol. Sci. 11: 1-14.Google Scholar
  30. Stoner, A. W. & R. J. Livingtone. 1984. Ontogenetic patterns in diet and feeding morphology in sympatric sparid fishes from seagrass meadows. Copeia 1984: 174-187.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Seok Nam Kwak
    • 1
  • Sung-Hoi Huh
    • 2
  • David W. Klumpp
    • 3
  1. 1.Korea Inter-university Institutes of Ocean SciencePukyong UniversityKorea
  2. 2.Department of OceanographyPukyong UniversityKorea
  3. 3.Australian Institutes of Marine ScienceMCAustralia

Personalised recommendations