Environmental Biology of Fishes

, Volume 71, Issue 4, pp 313–320 | Cite as

Effect of size on the energy acquired in species of the fish from a neotropical reservoir, Brazil

  • Evanilde Benedito cecilio
  • Alexandre Leandro pereira
  • Cássia Mônica sakuragui


In this paper we analysed autotrophic sources of the carbon (δ13C) and the trophic position (δ15N) of Leporinus friderici in the influence area of Corumbá Reservoir, Brazil. We collected samples of muscles of fish from different sizes riparian vegetation, C4 grasses, zooplankton, periphyton and particulate organic carbon (POC). There were significant differences for the carbon isotope proportion found in muscles of L.␣friderici in the different size groups analysed. The highest values of δ13C recorded for middle sized individuals is attributed to the large contribution of C4 plants in their diet. Small individuals sampled upstream also receive similar contribution from C4 plants. In contrast the same size group sampled downstream from the reservoir, has a much smaller of C4 plants. The δ13C negative character of small individuals from downstream is due to the larger contribution of C3 plants (except periphyton). At larger sizes we found intermediate δ13C values. The δ15N proportions we found for each size group were not significantly different, however we found decreasing mean values with increasing size. The trophic level calculated from the dietary data was higher than that found with the δ13C concentration in the muscle, except for small individuals, when the values were equal.

stable isotope Leporinus friderici ontogeny 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agostinho, A. A., H. F. JÚlio, Jr. & M. Petrere, Jr. 1994. Itaipu reservoir (Brazil): Impacts of the impoudment of the fish fauna and sheries. pp. 171-184. In: I. G. Cowx (ed. ) Reha-bilitation of Freshwater Fisheries, Fishing News Books, Oxford.Google Scholar
  2. Andrian, I. F., C. R. C. Dória, G. Torrente & C. M. Ferreti. 1994. Espectro alimentar e similaridade na composi c ão da dieta de quatro espécies de Leporinus (Characiformes, Anostomidae) do rio Paraná(22 10 ¢-22 50 ¢S/53 40 ¢W), Brasil. Rev. UNI-MAR 16: 97-106. sGoogle Scholar
  3. AraÚjo-Lima, C. A. R. M., B. R. Forsberg, R. Victoria & L. A. Martinelli. 1986. Energy sources for detritivorous shes in the Amazonian. Science 234: 1256-1258.Google Scholar
  4. Bayley, P. B. 1989. Aquatic environment in the Amazon basin, with an analysis of carbon sources, sh production and yield. Can. Spec. Publ. Fish. Aquat. Sci. 106: 399-408.Google Scholar
  5. Benedito-Cecilio, E., C. A. R. M. AraÚjo-Lima, B. R. Forsberg, M. M. Bittencourt & L. A. Martinelli. 2000. Carbon sources of Amazonian sheries. Fish. Manage. Ecol. 7: 305-315.Google Scholar
  6. Cabana, G. & J. B. Rasmussen. 1996. Comparison of aquatic food chains using nitrogen isotopes. Proc. Nat. Acad. Sci. USA 93: 10844-10847.Google Scholar
  7. De Filippo, R. & C. B. P. Soares. 1996. Caracteriza c ão lim-nológica e da qualidade da àgua do rio Corumbáe de seus principais a. uentes na área de influência da UHE Corumbá. FURNAS-Centrais Elétricas S. A., Departamento de Meio Ambiente, Rio de Janeiro. 21 pp.Google Scholar
  8. De Niro, M. J. & S. Epstein. 1978. Carbon isotopic evidence for different feeding patterns in two hyrax species occupying the same habitat. Science 201: 906-908.Google Scholar
  9. del Giorgio, P. A. & R. L. France. 1996. Ecosystem-specific patterns in the relationship between zooplancton and POM or microplankton d13C. Limnol. Oceanogr. 41: 359-365.Google Scholar
  10. Forsberg, B. R., C. A. R. M. AraÚjo-Lima, L. A. Martinelli, R. L. Victoria & J. A. Bonassi. 1993. Autotrophic carbon sources for fish of the Central Amazon. Ecology 74: 643-652.Google Scholar
  11. France, R. L. & R. H. Peters. 1997. Ecosystem differences in the trophic enrichment of 13C in aquatic food webs. Can. J. Fish. Aquat. Sci. 54: 1255-1258.Google Scholar
  12. Fry, B. & E. B. Sherr. 1984. d13C measurements as indicators of carbon flow in marine and freshwater ecosystems. Contrib. Mar. Sci. 27: 13-47.Google Scholar
  13. Gannes, L. Z., C. M. del Rio & P. Koch. 1998. Natural abun-dance variations in stable isotopes and their potential uses in animal physiological ecology. Comp. Biochem. Physiol. 119A: 725-737.Google Scholar
  14. Gu, B., C. L. Schelske & M. V. Hoyer. 1997. Intrapopulation feeding diversity in blue tilapia: evidence from stable-isotope analyses. Ecology 78: 2263-2266.Google Scholar
  15. Hecky, R. E. & R. H. Hesslein. 1995. Contributions of benthic algae to lake food webs as revealed by stable isotope analysis. J. North Am. Benthol. Soc. 14: 631-653.Google Scholar
  16. Hentschel, B. T. 1998. Intraspeci c variations in d13C indicate ontogenetic diet changes in deposit-feeding polychaetes. Ecology 79: 1357-1370.Google Scholar
  17. Junk, W. J. 1985. The Amazon. oodplain-a sink or source for organic carbon. Mitteilungen aus dem Geologisch-Palãonte-logischen Institut der Universitãt Sonderband, Hamburg 58: 267-283.Google Scholar
  18. Keough, J. R., Sierszen, M. E. & C. A. Hagley. 1996. Analysis of a lake superior coastal food web with stable isotope tech-niques. Limnol. Oceanogr. 41: 136-146.Google Scholar
  19. Lajtha, K. & J. D. Marshall. 1994. Sources of variation in the stable isotopic composition of plants. pp. 1-21. In: R. H. Michener & K. Lajtha (eds. ) Stable Isotopes in Ecology and Environmental Science, Blackwell, Oxford.Google Scholar
  20. Leite, R. G. 2000. Fontes de energia utilizadas pelas larvas de peixes no rio Solimöes/Amazonas e suas áreas inundáveis. Ph. D. Thesis, Universidade do Amazonas, INPA, Manaus. 118 pp.Google Scholar
  21. Lima, A. P. & W. E. Magnusson. 1998. Partitioning seasonal time: interactions among size, foraging activity and diet in leaf-litter frogs. Oecologia 116: 259-266.Google Scholar
  22. Lopes, C. A. 2001. Variabilidade de d13Cede d15N em fontes alóctones e autóctones e suas contribui cöes energéticas para o Prochilodus lineatus (Prochilodontidae, Characiformes)na Bacia do alto rio Paraná. M. Sc. Thesis, Universidade Esta-dual de Maringá, Maringá. 47 pp.Google Scholar
  23. Lopes, C. A. & E. Benedito-Cecilio. 2002. Variabilidade isotó-pica (d 13 Ce d 15 N)em produtores primários de ambientes terrestres e de água doce. Acta Sci. 24: 303-312.Google Scholar
  24. Lopes, C. A., E. Benedito-Cecilio & A. A. Agostinho. 2000. The reproductive strategy of Leporinus friderici (Characiformes, Anostomidae)in the Paranáriver basin: the effect of reser-Voirs. Rev. Brasilia Biol. 60: 255-266.Google Scholar
  25. Lowe-McConnell, R. H. 1987. Ecological Studies in Tropical Fish Communities, Cambridge University Press, Cambridge. 382 pp.Google Scholar
  26. Magnusson, W. E., A. P. Lima, A. F. Faria, R. L. Victoria & L. A. Martinelli. 2001. Size and carbon acquisition in lizards from Amazonian savanna: evidence from isotope analysis. Ecology 82: 1772-1780.Google Scholar
  27. Manetta, G. I. 2002. Fontes de carbono para as principais espécies da planície de inunda c ão do alto rio Paraná. M. Sc. Thesis, Universidade Estadual de Maringá, Maringá. 26 pp.Google Scholar
  28. Martinelli, L. A., A. H. Devol, R. L. Victoria & J. E. Richey. 1991. Stable carbon isotope variation in C3 and C4 plants along the Amazon River. Nature 353: 57-59.Google Scholar
  29. Olson, M. H. 1996. Ontogenetic niche shifts in largemouth bass: variability and consequences for first-year growth. Ecology 77: 179-190.Google Scholar
  30. Polis, G. A. 1984. Age structure component of niche width and intraspecific resource portioning: can age groups function as ecological species? Am. Nat. 123: 541-564.Google Scholar
  31. Roelke, L. A. & L. A. Cifuentes. 1997. Use of stable isotopes to assess groups of king mackerel, Scomberomorus cavalla, in the Gulf of Mexico and southeastern Florida. Fish. Bull. 95: 540-551.Google Scholar
  32. UEM. NUPELIA/FURNAS. 1997. Estudos ictiológicos na área de influência do AHE Corumbá. Fase rio. UEM, Nupélia/FURNAS, Maringá. 289 pp.Google Scholar
  33. UEM. NUPELIA/FURNAS. 2000. Estudos ictiológicos na área de influência do AHE Corumbá. Fase reservatório. UEM, Nupélia/FURNAS, Maringá. 365 pp.Google Scholar
  34. Vander Zanden, M. J., G. Cabana & J. B. Rasmussen. 1997. Comparing the trophic position of littoral fish estimated using using stable nitrogen isotope (d15N)and dietary data. Can. J. Fish. Aquat. Sci. 54: 1142-1158.Google Scholar
  35. Wootton, R. J. 1990. Ecology of Teleost Fishes, Chapman Hall, London. 404 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Evanilde Benedito cecilio
    • 1
  • Alexandre Leandro pereira
    • 2
  • Cássia Mônica sakuragui
    • 3
  1. 1.Núcleo de Pesquisas em Limnologia, Ictiologia e Aqüicultura, Curso de Pós-graduação em Ecologia de Ambientes de Água Doce, Departamento de BiologiaUniversidade Estadual de Maringá, Av. ColomboMaringá, PRBrazil
  2. 2.Curso de Pós-graduação em Ecologia de Ambientes de Água DoceUniversidade Estadual de Maringá, Av. ColomboMaringá, PRBrazil
  3. 3.Departamento de BiologiaUniversidade Estadual de Maringá, Av. ColomboMaringá, PRBrazil

Personalised recommendations