Skip to main content

Advertisement

Log in

Adaptation for Mitigation

  • Published:
Environmental and Resource Economics Aims and scope Submit manuscript

Abstract

This paper develops a two-region (North and South) dynamic model in which regional stocks of effective labor are negatively influenced by the global stock of pollution. By characterizing the equilibrium strategy of each region we show that the regions’ best responses can be strategic complements through a dynamic complementarity effect. The model is then used to analyze the impact of adaptation assistance from North to South. It is shown that North’s unilateral assistance to South (thus enhancing South’s adaptation capacity) can facilitate pollution mitigation in both regions, especially when the assistance is targeted at labor protection. Pollution might increase in the short run, but in the long run the level of pollution will decline. The adaptation assistance we propose is incentive compatible and Pareto improving.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Acemoglu D, Aghion P, Bursztyn L, Hemous D (2012) The environment and directed technical change. Am Econ Rev 102(1):131–166

    Article  Google Scholar 

  • Biagini B, Bierbaum R, Stults M, Dobardzic S, McNeeley S (2014) A typology of adaptation actions: a global look at climate adaptation actions financed through the global environment facility. Glob Environ Change 25:97–108

    Article  Google Scholar 

  • Bréchet T, Hritonenko N, Yatsenko Y (2013) Adaptation and mitigation in long-term climate policy. Environ Resour Econ 55:217–243

    Article  Google Scholar 

  • Bretschger L, Suphaphiphat N (2014) Effective climate policies in a dynamic North–South model. Eur Econ Rev 69:59–77

    Article  Google Scholar 

  • Buob S, Stephan G (2011) To mitigate or to adapt: how to confront global climate change. Eur J Polit Econ 27:1–16

    Article  Google Scholar 

  • Carleton TA, Hsiang SM (2016) Social and economic impacts of climate. Science 353:aad9837

    Article  Google Scholar 

  • Copeland BR, Taylor MS (2003) Trade and the environment: theory and evidence. Princeton University Press, Princeton

    Book  Google Scholar 

  • de Bruin KC, Dellink RB, Tol RSJ (2009) AD-DICE: an implementation of adaptation in the DICE model. Clim Change 95:63–81

    Article  Google Scholar 

  • Dell M, Jones BF, Olken BA (2012) Temperature shocks and economic growth: evidence from the last half century. Am Econ J Macroecon 4(3):198–204

    Article  Google Scholar 

  • Dell M, Jones BF, Olken BA (2014) What do we learn from the weather? The new climate-economy literature. J Econ Lit 52(3):740–798

    Article  Google Scholar 

  • Deschenes O (2014) Temperature, human health, and adaptation: a review of the empirical literature. Energy Econ 46:606–619

    Article  Google Scholar 

  • Dietz S, Stern N (2015) Endogenous growth, convexity of damage, and climate risk: how Nordhaus’ framework supports deep cuts in carbon emissions. Econ J 125:574–620

    Article  Google Scholar 

  • Dixit A (1986) Comparative statics for oligopoly. Int Econ Rev 27(1):107–115

    Article  Google Scholar 

  • Ebert U, Welsch H (2012) Adaptation and mitigation in global pollution problems: economic impacts of productivity, sensitivity, and adaptive capacity. Environ Resour Econ 52:49–64

    Article  Google Scholar 

  • Eyckmans J, Fankhauser S, Kverndokk S (2016) Development aid and climate finance. Environ Resour Econ 63:429–450

    Article  Google Scholar 

  • Fankhauser S, Tol RSJ (2005) On climate change and economic growth. Resour Energy Econ 27:1–17

    Article  Google Scholar 

  • Gerlagh R, Liski M (2018) Consistent climate policies. J Eur Econ Assoc 16(1):1–44

    Article  Google Scholar 

  • Golosov M, Hassler J, Krusell P, Tsyvinski A (2014) Optimal taxes on fossil fuel in general equilibrium. Econometrica 82:41–88

    Article  Google Scholar 

  • Graff Zivin J, Neidell M (2012) The impact of pollution on worker productivity. Am Econ Rev 102(7):3652–3673

    Article  Google Scholar 

  • Graff Zivin J, Shrader J (2016) Temperature extremes, health, and human capital. Future Children 26(1):31–50

    Article  Google Scholar 

  • Golombek R, Hoel M (2004) Unilateral emissions reductions and cross-country technology spillovers. Adv Econ Anal Policy 3(2):1–27

    Google Scholar 

  • Hassler J, Krusell P, Smith A Jr (2016) Environmental macroeconomics. In Taylor JB, Uhlig H (eds) Handbook of macroeconomics. Elsevier, Amsterdam, pp 1893–2008

    Google Scholar 

  • Ikefuji M, Horii R (2012) Natural disasters in a two-sector model of endogenous growth. J Public Econ 96:784–796

    Article  Google Scholar 

  • Ingham A, Ma J, Ulph AM (2013) Can adaptation and mitigation be complements? Clim Change 120:39–53

    Article  Google Scholar 

  • IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge, UK, and New York, NY, USA

  • Jensen R (2000) Agricultural volatility and investments in children. Am Econ Rev 90(2):399–404

    Article  Google Scholar 

  • Kama AL, Pommeret A (2017) Supplementing domestic mitigation and adaptation with emissions reduction abroad to face climate change. Environ Resour Econ 68:875–891

    Article  Google Scholar 

  • Kane S, Shogren JF (2000) Linking adaptation and mitigation in climate change policy. Clim Change 45:75–102

    Article  Google Scholar 

  • Kousky C (2016) Impacts of natural disasters on children. Future Children 26(1):73–92

    Article  Google Scholar 

  • Moore FC, Diaz DB (2015) Temperature impacts on economic growth warrant stringent mitigation policy. Nat Clim Change 5:127–131

    Article  Google Scholar 

  • Onuma A, Arino Y (2011) Greenhouse gas emission, mitigation and innovation of adaptation technology in a North–South economy. Environ Dev Econ 16:639–656

    Article  Google Scholar 

  • Sakamoto H, Ikefuji M, Magnus JR (2019) Online appendix to “adaptation for mitigation”. Environ Resour Econ (Electronic Supplementary Material). https://doi.org/10.1007/s10640-019-00396-x

    Article  Google Scholar 

  • Stephan G, Müller-Fürstenberger G (2015) Global warming, technological change and trade in carbon energy: challenge or threat? Environ Resour Econ 62:791–809

    Article  Google Scholar 

  • Stern N (2013) The structure of economic modeling of the potential impacts of climate change: grafting gross underestimation of risk onto already narrow science models. J Econ Lit 51(3):838–859

    Article  Google Scholar 

  • Stranlund JK (1996) On the strategic potential of technological aid in international environmental relations. J Econ 1:1–22

    Article  Google Scholar 

  • Tsur Y, Withagen C (2013) Preparing for catastrophic climate change. J Econ 110(3):225–239

    Article  Google Scholar 

  • UNEP (2016) The adaptation finance gap report 2016. United Nations Environment Programme, Nairobi, Kenya

  • World Bank (2010) World development report 2010: development and climate change, Washington DC

  • Zemel A (2015) Adaptation, mitigation and risk: an analytic approach. J Econ Dyn Control 51:133–147

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Sakamoto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

We are grateful to Ingmar Schumacher, the editor, and four anonymous referees for their positive and constructive comments, and to Larry Karp, Christian Traeger, Rintaro Yamaguchi, and Akihiko Yanase for suggestions and discussions. Earlier versions of this paper were presented at seminars in Tilburg University and UC Berkeley, and at the EconomiX-CNRS workshop at Université Paris Ouest (December 2014), the EAERE Conference at Zurich (June 2016), and the Conference on Economics of Global Interactions at Bari (September 2016). Sakamoto acknowledges financial support from the Japan Society for the Promotion of Science (JSPS) and is grateful to the Department of Agricultural and Resource Economics at UC Berkeley for its hospitality.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 326 KB)

Appendix: Proofs of Propositions

Appendix: Proofs of Propositions

1.1 Proof of Proposition 1

1.1.1 Problem of Period \(t=2\)

Since \(V_{i,3}(Z_{3})=0\), it follows that \(E_{i,2}=\bar{E}_{i}\) for both regions. Hence, for each \(i \in \{n,s\}\),

$$\begin{aligned} C_{i,2} = Y_{i,2} = \Delta _{i,2}^{Y}A_{i,2} \left( \bar{E}_{i}^{\rho } + L_{i,2}^{\rho }\right) ^{1/\rho } \end{aligned}$$
(25)

and we find that the value function is

$$\begin{aligned} V_{i,2}(Z_{2})&= \ln (C_{i,2}) = \ln \left( \Delta _{i,2}^{Y}A_{i,2} \left( \bar{E}_{i}^{\rho } + L_{i,2}^{\rho } \right) ^{1/\rho }\right) \nonumber \\&= -\,\delta _{i,2}^{Y}M_{2}^{\xi } + \ln (A_{i,2}) + \frac{1}{\rho } \ln \left( \bar{E}_{i}^{\rho } + L_{i,2}^{\rho } \right) , \end{aligned}$$
(26)

where \(Z_{2}=(L_{n,2},L_{s,2},M_{2},R_{2})\). We note that

$$\begin{aligned} \frac{d V_{i,2}(Z_{2})}{d L_{i,2}} = \frac{L_{i,2}^{\rho -1}}{\bar{E}_{i}^{\rho } + L_{i,2}^{\rho }}, \qquad \frac{d V_{i,2}(Z_{2})}{d L_{j, 2}} = 0, \end{aligned}$$
(27)

and

$$\begin{aligned} \frac{d V_{i,2}(Z_{2})}{d M_{2}} = -\, \delta _{i,2}^{Y}\xi M_{2}^{\xi -1}. \end{aligned}$$
(28)

1.1.2 Problem of Period \(t=1\)

Combining Eqs. (28) and (12), we may write the first-order condition as

$$\begin{aligned} \frac{E_{i,1}^{\rho -1}}{E_{i,1}^{\rho }+L_{i,1}^{\rho }} = \beta \delta _{i,2}^{Y}\xi \left( \phi _{M}M_{1} + E_{n,1} + E_{s,1}\right) ^{\xi -1} \quad \forall i \in \{n,s\}, \end{aligned}$$
(29)

which determines \((E_{n,1}, E_{s,1})\) as a function of \(Z_{1}=(L_{n,1},L_{s,1},M_{1},R_{1})\). Notice that the left-hand side is decreasing in \(E_{i,1}\) and is independent of \(E_{j,1}\) whereas the right-hand side is increasing in both \(E_{i,1}\) and \(E_{j,1}\). It follows that the equilibrium combination of \((E_{n,1},E_{s,1})\) satisfies the stability conditions of Dixit (1986).

Totally differentiating Eq. (29) yields

$$\begin{aligned} \frac{d E_{i,1}}{dM_{1}}= & -\frac{\Psi _{i}}{1+\Psi _{n} + \Psi _{s} }\phi _{M} \le 0, \end{aligned}$$
(30)
$$\begin{aligned} \frac{d E_{i,1}}{dL_{i,1}}= & -\frac{1+\Psi _{j}}{1+\Psi _{n}+\Psi _{s}}\Phi _{i} < 0, \end{aligned}$$
(31)
$$\begin{aligned} \frac{d E_{i,1}}{dL_{j,1}}= & \frac{\Psi _{i}}{1+\Psi _{n}+\Psi _{s}}\Phi _{j} \ge 0, \end{aligned}$$
(32)

where we define

$$\begin{aligned} \Psi _{i}&:= \frac{E_{i,1}\left( E_{i,1}^{\rho }+L_{i,1}^{\rho }\right) }{E_{i,1}^{\rho } + (1-\rho )L_{i,1}^{\rho }}\frac{\xi -1}{\phi _{M}M_{1} + E_{n,1} + E_{s,1}} \ge 0, \end{aligned}$$
(33)
$$\begin{aligned} \Phi _{i}&:= \frac{\rho E_{i,1}L_{i,1}^{\rho -1}}{E_{i,1}^{\rho } + (1-\rho )L_{i,1}^{\rho }} >0. \end{aligned}$$
(34)

Notice that \(\lim _{\xi \rightarrow 1}\Psi _{i}=0\) and the substitution yields

$$\begin{aligned} \lim _{\xi \rightarrow 1}\frac{d E_{i,1}}{dM_{1}} = 0, \quad \lim _{\xi \rightarrow 1}\frac{d E_{i,1}}{dL_{i,1}} = -\lim _{\xi \rightarrow 1}\Phi _{i}(Z_{1})<0, \quad \lim _{\xi \rightarrow 1}\frac{d E_{i,1}}{dL_{j,1}} = 0. \end{aligned}$$
(35)

The value function is

$$\begin{aligned} V_{i,1}(Z_{1})&= \ln (C_{i,1}) + \beta V_{i,2}(Z_{2}) \nonumber \\&= \ln \left( \Delta _{i,1}^{Y}A_{i,1}\left( E_{i,1}^{\rho } + L_{i,1}^{\rho }\right) ^{1/\rho }\right) + \beta V_{i,2}(Z_{2}) \nonumber \\&= -\,\delta _{i,1}^{Y}M_{1}^{\xi } + \ln (A_{i,1}) +\frac{1}{\rho }\ln \left( E_{i,1}^{\rho } +L_{i,1}^{\rho }\right) + \beta V_{i,2}(Z_{2}), \end{aligned}$$
(36)

where \(E_{i,1}\) is implicitly defined by Eq. (29) and \(V_{i,2}\) is given by Eq. (26). Using Eqs. (27), (28), and (29), we obtain

$$\begin{aligned} \frac{d V_{i,1}(Z_{1})}{d M_{1}}&= -\, \delta _{i,1}^{Y}\xi M_{1}^{\xi -1} + \frac{E_{i,1}^{\rho -1}}{E_{i,1}^{\rho } + L_{i,1}^{\rho }} \frac{dE_{i,1}}{dM_{1}} \nonumber \\&\quad +\, \beta \frac{\partial V_{i,2}(Z_{2})}{\partial M_{2}} \frac{d M_{2}}{dM_{1}} + \beta \frac{\partial V_{i,2}(Z_{2})}{\partial L_{i,2}} \frac{d L_{i,2}}{dM_{1}} + \beta \frac{\partial V_{i,2}(Z_{2})}{\partial L_{j,2}} \frac{d L_{j,2}}{dM_{1}} \nonumber \\&= -\, \delta _{i,1}^{Y}\xi M_{1}^{\xi -1} -\beta \delta _{i,2}^{Y}\xi M_{2}^{\xi -1} \left( \phi _{M} + \frac{dE_{j,1}}{dM_{1}}\right) -\beta \frac{L_{i,2}^{\rho }}{\bar{E}_{i}^{\rho } +L_{i,2}^{\rho }}\delta _{i,1}^{L}\xi M_{1}^{\xi -1}, \end{aligned}$$
(37)

where \(dE_{j,1}/dM_{1}\) is given by Eqs. (30), (31), and (32). Moreover,

$$\begin{aligned} \frac{d^{2} V_{i,1}(Z_{1})}{d M_{1}^{2}}&= -\,\delta _{i,1}^{Y}\xi (\xi -1)M_{1}^{\xi -2} \nonumber \\&\quad -\, \beta \delta _{i,2}^{Y}\xi (\xi -1)M_{2}^{\xi -2} \left( \phi _{M} + \frac{dE_{j,1}}{dM_{1}}\right) \left( \phi _{M} + \frac{dE_{i,1}}{dM_{1}} +\frac{dE_{j,1}}{dM_{1}} \right) \nonumber \\&\quad -\, \beta \delta _{i,2}^{Y}\xi M_{2}^{\xi -1} \frac{d^{2}E_{j,1}}{dM_{1}^{2}} \nonumber \\&\quad -\, \beta \frac{L_{i,2}^{\rho }}{\bar{E}_{i}^{\rho } + L_{i,2}^{\rho }}\delta _{i,1}^{L}\xi M_{1}^{\xi -2} \left\{ \xi -1 -\frac{\bar{E}_{i}^{\rho }}{\bar{E}_{i}^{\rho } + L_{i,2}^{\rho }}\rho \delta _{i,1}^{L}M_{1}^{\xi } \right\} , \end{aligned}$$
(38)

where

$$\begin{aligned} \frac{d^{2}E_{j,1}}{dM_{1}^{2}} = -\frac{\phi _{M}}{1+\Psi _{n}+\Psi _{s}} \left( \frac{1+\Psi _{j}}{1+\Psi _{n}+\Psi _{s}}\frac{\partial \Psi _{i}}{\partial M_{1}} -\frac{\Psi _{i}}{1+\Psi _{n}+\Psi _{s}}\frac{\partial \Psi _{j}}{\partial M_{1}} \right) \end{aligned}$$
(39)

and

$$\begin{aligned} \frac{\partial \Psi _{i}}{\partial M_{1}}\frac{M_{1}}{\Psi _{i}}&= -\,\phi _{M} - \frac{\partial E_{i,1}}{\partial M_{1}} -\frac{\partial E_{j,1}}{\partial M_{1}} \nonumber \\&\quad + \left( 1 + \rho \frac{E_{i,1}^{\rho }}{E_{i,1}^{\rho } +L_{i,1}^{\rho }} - \rho \frac{E_{i,1}^{\rho }}{E_{i,1}^{\rho } +(1-\rho )L_{i,1}^{\rho }}\right) \frac{\partial E_{i,1}}{\partial M_{1}} \frac{M_{1}}{E_{i,1}}. \end{aligned}$$
(40)

Since \(\lim _{\xi \rightarrow 1}\Psi _{i}=0\), it follows that

$$\begin{aligned} \lim _{\xi \rightarrow 1}\frac{\partial \Psi _{i}}{\partial M_{1}} = 0, \quad \lim _{\xi \rightarrow 1}\frac{d^{2}E_{j,1}}{dM_{1}^{2}} = 0, \end{aligned}$$
(41)

and therefore

$$\begin{aligned} \lim _{\xi \rightarrow 1}\frac{d^{2} V_{i,1}(Z_{1})}{d M_{1}^{2}} = \lim _{\xi \rightarrow 1}\beta \rho \bar{E}_{i}^{\rho }L_{i,2}^{\rho } \left( \frac{\delta _{i,1}^{L}}{\bar{E}_{i}^{\rho } + L_{i,2}^{\rho }}\right) ^{2} > 0. \end{aligned}$$
(42)

1.1.3 Problem of Period \(t=0\)

Combining Eqs. (37) and (12), we may write the first-order condition as

$$\begin{aligned} {\textit{MB}}_{i}(E_{i,0}) = {\textit{MD}}_{i}(E_{i,0},E_{j,0}), \end{aligned}$$
(43)

where \({\textit{MB}}_{i}(E_{i,0})\) is the marginal benefit from emission defined by

$$\begin{aligned} {\textit{MB}}_{i}(E_{i,0}) := \frac{Y_{i,0}}{C_{i,0}} \frac{E_{i,0}^{\rho -1}}{E_{i,0}^{\rho }+L_{i,0}^{\rho }} ={\left\{ \begin{array}{ll} \frac{Y_{n,0}}{Y_{n,0}-R}\frac{E_{n,0}^{\rho -1}}{E_{n,0}^{\rho } +L_{n,0}^{\rho }}, & i = n\\ \frac{E_{s,0}^{\rho -1}}{E_{s,0}^{\rho }+L_{s,0}^{\rho }}, & i = s \end{array}\right. } \end{aligned}$$
(44)

and \({\textit{MD}}_{i}(E_{i,0},E_{j,0})\) is the marginal damage from emission defined by

$$\begin{aligned} {\textit{MD}}_{i}(E_{i,0},E_{j,0}) := -\,\beta \frac{d V_{i,1}(Z_{1})}{d M_{1}} \bigg |_{M_{1}=\phi _{M}M_{0}+E_{i,0}+E_{j,0}}. \end{aligned}$$
(45)

Notice that for any \(E_{j,0}\ge 0\), we have

$$\begin{aligned} \lim _{E_{i,0}\rightarrow 0}{\textit{MB}}_{i}(E_{i,0}) = \infty > \lim _{E_{i,0}\rightarrow 0}{\textit{MD}}_{i}(E_{i,0},E_{j,0}) \end{aligned}$$
(46)

and

$$\begin{aligned} \lim _{E_{i,0}\rightarrow \infty }{\textit{MD}}_{i}(E_{i,0},E_{j,0}) > 0 = \lim _{E_{i,0}\rightarrow \infty }{\textit{MB}}_{i}(E_{i,0}). \end{aligned}$$
(47)

Hence, for each \(E_{j,0}\ge 0\), there exists \(E_{i,0} > 0\) at which the graph of \({\textit{MB}}_{i}\) crosses the graph of \({\textit{MD}}_{i}\) from above. Let \(E_{i}^{*}(E_{j,0})>0\) denote the smallest of such points, which is the reaction function of region i. We characterize the equilibrium level of \(E_{s,0}\) by \(E_{s,0}=E^{*}_{s} (E_{n}^{*}(E_{s,0}))\), which is the smallest solution of

$$\begin{aligned} {\textit{MB}}_{s}(E_{s,0}) = {\textit{MD}}_{s}(E_{s,0},E_{n}^{*}(E_{s,0})). \end{aligned}$$
(48)

The equilibrium level of \(E_{n,0}\) is then determined by \(E_{n,0}=E_{n}^{*}(E_{s,0})\). We note that, for both regions, the second-order condition is satisfied because the marginal benefit curve crosses the marginal damage curve from above.

To see that this equilibrium is stable, let us define

$$\begin{aligned} {\textit{MB}}_{i,i} := \frac{\partial {\textit{MB}}_{i}}{\partial E_{i,0}}, \quad {\textit{MD}}_{i,j} := \frac{\partial {\textit{MD}}_{i}}{\partial E_{j,0}} \quad \forall j \in \{n,s\} \end{aligned}$$
(49)

for each \(i \in \{n,s\}\). The second-order condition implies

$$\begin{aligned} {\textit{MB}}_{i,i} < {\textit{MD}}_{i,i} \quad \forall i \in \{n,s\} \end{aligned}$$
(50)

at equilibrium. Also, by the definition of \(E^{*}_{n}\), we have

$$\begin{aligned} {\textit{MB}}_{n}(E_{n}^{*}(E_{s,0})) = {\textit{MD}}_{n}(E_{n}^{*}(E_{s,0}),E_{s,0}) \quad \forall E_{s,0}\ge 0 \end{aligned}$$
(51)

and hence

$$\begin{aligned} {\textit{MB}}_{n,n}\frac{dE^{*}_{n}}{dE_{s,0}} = {\textit{MD}}_{n,n} \frac{dE^{*}_{n}}{dE_{s,0}} + {\textit{MD}}_{n,s}. \end{aligned}$$
(52)

Moreover, since the graph of \({\textit{MB}}_{i}\) crosses the graph of \({\textit{MD}}_{i}\) from above, we must have

$$\begin{aligned} {\textit{MB}}_{s,s} < {\textit{MD}}_{s,s} + {\textit{MD}}_{s,n}\frac{dE^{*}_{n}}{dE_{s,0}} \end{aligned}$$
(53)

at equilibrium. Combining Eqs. (50), (52), and (53) yields

$$\begin{aligned} ({\textit{MD}}_{s,s}-{\textit{MB}}_{s,s})({\textit{MD}}_{n,n}-{\textit{MB}}_{n,n}) - {\textit{MD}}_{s,n}{\textit{MD}}_{n,s} > 0, \end{aligned}$$
(54)

meaning that the stability conditions of Dixit (1986) are satisfied.

1.2 Proof of Proposition 2

To characterize \(E_{i,0}\), observe first that the marginal benefit \({\textit{MB}}_{i}(E_{i,0})\) of emission is decreasing in \(E_{i,0}\). On the other hand, Eq. (42) implies that at least when \(\xi\) is in the neighborhood of \(\xi =1\), the marginal damage \({\textit{MD}}_{i}(E_{i,0},E_{j,0})\) of emission is decreasing in \(E_{j,0}\), meaning that the marginal damage curve of a region shifts upwards as the other region reduce its emission. Therefore, we conclude that there exists \(\bar{\xi }>1\) such that the short-run regional emissions are strategic complements as long as \(\xi < \bar{\xi }\).

1.3 Proof of Proposition 3

See text.

1.4 Proof of Proposition 4

Totally differentiating Eq. (43) with respect to R for both \(i \in \{n,s\}\) and evaluating every term at \(R=0\) yields

$$\begin{aligned} \left( \begin{array}{c} dE_{n,0}/dR \\ dE_{s,0}/dR \end{array}\right) = \frac{D}{\det (D)} \left( \begin{array}{c} \partial {\textit{MB}}_{n}/\partial R \\ -\partial {\textit{MD}}_{s}/\partial R \end{array}\right) , \end{aligned}$$
(55)

where

$$\begin{aligned} \frac{\partial {\textit{MB}}_{n}}{\partial R}&= \frac{E_{n,0}^{\rho -1}}{E_{n,0}^{\rho }+L_{n,0}^{\rho }}\frac{1}{Y_{n,0}} >0, \end{aligned}$$
(56)
$$\begin{aligned} \frac{\partial {\textit{MD}}_{s}}{\partial R}&= -\,\beta \phi _{R} \varepsilon ^{Y} + \beta ^{2}\frac{L_{s,2}^{\rho }}{\bar{E}^{\rho }_{s} +L_{s,2}^{\rho }}\left[ \frac{\bar{E}_{s}^{\rho }}{\bar{E}^{\rho }_{s} +L_{s,2}^{\rho }}(M_{0}+\phi _{R}M_{1})\rho \delta _{s}^{L}-\phi _{R}\right] \varepsilon ^{L}, \end{aligned}$$
(57)
$$\begin{aligned} D&:= \left( \begin{array}{cc} {\textit{MD}}_{s,s}-{\textit{MB}}_{s,s} & -\,{\textit{MD}}_{n,s} \\ -\,{\textit{MD}}_{s,n} & {\textit{MD}}_{n,n}-{\textit{MB}}_{n,n} \end{array}\right) . \end{aligned}$$
(58)

We first note that every element of matrix D is strictly positive: the diagonal elements because of the second-order condition and the off-diagonal elements because of Eqs. (45) and (42). The determinant of D is also strictly positive due to the stability condition (54).

Since every entry of matrix \(D/\det (D)\) is strictly positive, Eq. (55) indicates that \(dE_{i,0}/dR\) is a positive linear combination of \(\partial {\textit{MB}}_{n}/\partial R\) and \(-\partial {\textit{MD}}_{s}/\partial R\). We observe from Eq. (56) that \(\partial {\textit{MB}}_{n}/\partial R\) is strictly positive. This term represents the income effect we discussed in the main text. The other partial derivative \(\partial {\textit{MD}}_{s}/\partial R\) in Eq. (57) may be positive or negative, depending on the relative importance of substitution and complementarity effects.

Notice that in Eq. (57), the terms in square brackets are strictly positive if the damage parameter \(\delta _{s}^{L}\) is sufficiently large. A sufficient (but by no means necessary) condition for such a case to be true is

$$\begin{aligned} \rho (\phi _{R}^{-1}+\phi _{M})M_{0}\delta _{s}^{L} > 1 + L_{s,0} \bar{E}_{s}^{-\rho }e^{g_{s,0}+g_{s,1}-(1+\phi _{M})M_{0}\delta _{s}^{L}}, \end{aligned}$$
(59)

which is satisfied by a sufficiently large value of \(\delta _{s}^{L}\). Accordingly, under Assumption 1, \(\partial {\textit{MD}}_{s}/\partial R\) is a strictly increasing linear function of \(\varepsilon ^{L}\). On the other hand, the income effect, \(\partial {\textit{MB}}_{n}/\partial R\), is independent of \(\varepsilon ^{L}\), as is clear from Eq. (56). Hence, by Eq. (55), we know that \(dE_{i,0}/dR\) is a strictly decreasing linear function of \(\varepsilon ^{L}\). In particular, if we define

$$\begin{aligned} \varepsilon _{E_{n,0}}^{L} := \frac{\frac{{\textit{MD}}_{s,s} -{\textit{MB}}_{s,s}}{-{\textit{MD}}_{n,s}}\frac{\partial {\textit{MB}}_{n}}{\partial R} +\beta \phi _{R}\varepsilon ^{Y}}{\beta ^{2}\frac{L_{s,2}^{\rho }}{\bar{E}^{\rho }_{s}+L_{s,2}^{\rho }}\left[ \frac{\bar{E}_{s}^{\rho }}{\bar{E}^{\rho }_{s}+L_{s,2}^{\rho }}(M_{0}+\phi _{R}M_{1}) \rho \delta _{s}^{L}-\phi _{R} \right] } > 0 \end{aligned}$$
(60)

and

$$\begin{aligned} \varepsilon _{E_{s,0}}^{L} := \frac{\frac{-{\textit{MD}}_{s,n}}{{\textit{MD}}_{n,n}-{\textit{MB}}_{n,n}} \frac{\partial {\textit{MB}}_{n}}{\partial R} + \beta \phi _{R}\varepsilon ^{Y}}{\beta ^{2} \frac{L_{s,2}^{\rho }}{\bar{E}^{\rho }_{s}+L_{s,2}^{\rho }} \left[ \frac{\bar{E}_{s}^{\rho }}{\bar{E}^{\rho }_{s} +L_{s,2}^{\rho }}(M_{0}+\phi _{R}M_{1})\rho \delta _{s}^{L}-\phi _{R} \right] }> 0, \end{aligned}$$
(61)

it follows that for each region i, \(dE_{i,0}/dR<0\) if and only if \(\varepsilon ^{L} > \varepsilon ^{L}_{E_{i,0}}\).

Finally, Eq. (54) implies

$$\begin{aligned} \frac{{\textit{MD}}_{s,s}-{\textit{MB}}_{s,s}}{-{\textit{MD}}_{n,s}} > \frac{-{\textit{MD}}_{s,n}}{{\textit{MD}}_{n,n}-{\textit{MB}}_{n,n}}, \end{aligned}$$
(62)

which, together with Eqs. (60) and (61), yields \(\varepsilon _{E_{n,0}}^{L} >\varepsilon _{E_{s,0}}^{L}\). For the sake of completeness, we also note that the two thresholds coincide if there is no income effect (i.e., if \(\partial {\textit{MB}}_{n}/\partial R = 0\)).

1.5 Proof of Proposition 5

First notice

$$\begin{aligned} \frac{dM_{1}}{dR} = \frac{dE_{n,0}}{dR} + \frac{dE_{s,0}}{dR}, \end{aligned}$$
(63)

where, by Proposition 4, the right-hand side is strictly decreasing in \(\varepsilon ^{L}\). Also, Proposition 4 shows that there exist thresholds \(\varepsilon ^{L}_{E_{n,0}}\) and \(\varepsilon ^{L}_{E_{s,0}}\) with \(0<\varepsilon _{E_{s,0}}^{L} <\varepsilon _{E_{n,0}}^{L}\) such that

$$\begin{aligned} \frac{dE_{n,0}}{dR} + \frac{dE_{s,0}}{dR} > 0 \quad \forall \varepsilon ^{L} < \varepsilon ^{L}_{E_{s,0}} \end{aligned}$$
(64)

and

$$\begin{aligned} \frac{dE_{n,0}}{dR} + \frac{dE_{s,0}}{dR} < 0 \quad \forall \varepsilon ^{L} > \varepsilon ^{L}_{E_{n,0}}. \end{aligned}$$
(65)

Then there must exist \(\varepsilon ^{L}_{M_{1}}\) in the open interval \((\varepsilon ^{L}_{E_{s,0}}, \varepsilon ^{L}_{E_{n,0}})\) such that

$$\begin{aligned} \frac{dM_{1}}{dR} = \frac{dE_{n,0}}{dR} + \frac{dE_{s,0}}{dR} < 0 \iff \varepsilon ^{L} > \varepsilon ^{L}_{M_{1}}. \end{aligned}$$
(66)

Next, observe

$$\begin{aligned} \frac{dM_{2}}{dR} = \phi _{M}\frac{dM_{1}}{dR} + \frac{dE_{n,1}}{dR} + \frac{dE_{s,1}}{dR}, \end{aligned}$$
(67)

where the second term on the right-hand side is zero. By Eq. (17), the third term is strictly negative and strictly increasing in \(\varepsilon ^{L}\). Therefore, combined with Eq. (66), this implies that there exists \(\varepsilon ^{L}_{M_{2}}<\varepsilon ^{L}_{M_{1}}\) such that

$$\begin{aligned} \frac{dM_{2}}{dR} < 0 \iff \varepsilon ^{L} > \varepsilon ^{L}_{M_{2}}, \end{aligned}$$
(68)

which completes the proof.

1.6 Proof of Proposition 6

By the envelope theorem, a marginal change in the state variables has no first-order effect on \(W_{i}(R)\) or \(V_{i,t}(Z_{t})\) through the region i’s own control, \(E_{i,t}\). Hence,

$$\begin{aligned} \frac{d W_{i}}{d R}&= \frac{1}{C_{i,0}}\frac{\partial C_{i,0}}{\partial R} + \beta \frac{d V_{i,1}(Z_{1})}{d M_{1}}\frac{dE_{j,0}}{dR} \nonumber \\&\quad +\, \beta \frac{d V_{i,1}(Z_{1})}{d L_{i,1}}\frac{dL_{i,1}}{dR} + \beta \frac{d V_{i,1}(Z_{1})}{d L_{j,1}}\frac{dL_{j,1}}{dR} + \beta \frac{d V_{i,1}(Z_{1})}{d R_{1}}\frac{dR_{1}}{dR} \nonumber \\&= {\left\{ \begin{array}{ll} - \frac{1}{Y_{n,0}-R} + \beta \frac{d V_{n,1}(Z_{1})}{d M_{1}} \frac{dE_{s,0}}{dR} + \beta \frac{d V_{n,1}(Z_{1})}{d L_{s,1}} \frac{dL_{s,1}}{dR} + \beta \frac{d V_{n,1}(Z_{1})}{d R_{1}}\phi _{R}, & i = n, \\ -\frac{d\delta _{s}^{Y}(R)}{dR}M_{0} + \beta \frac{d V_{s,1} (Z_{1})}{d M_{1}}\frac{dE_{n,0}}{dR} + \beta \frac{d V_{s,1} (Z_{1})}{d L_{s,1}}\frac{dL_{s,1}}{dR} + \beta \frac{d V_{s,1} (Z_{1})}{d R_{1}}\phi _{R}, & i = s, \end{array}\right. } \end{aligned}$$
(69)

where

$$\begin{aligned} \frac{d V_{n,1}(Z_{1})}{d L_{s,1}} = \beta \frac{d V_{n,2}(Z_{2})}{d M_{2}} \frac{dE_{s,1}}{dL_{s,1}}, \quad \frac{d V_{s,1}(Z_{1})}{d L_{s,1}} =\beta \frac{d V_{s,2}(Z_{2})}{d L_{s,2}}\frac{dL_{s,2}}{dL_{s,1}}, \end{aligned}$$
(70)

and

$$\begin{aligned} \frac{d V_{i,1}(Z_{1})}{d R_{1}}&= \frac{1}{Y_{i,1}} \left( \frac{\partial Y_{i,1}}{\partial R_{1}} +\frac{\partial Y_{i,1}}{\partial E_{i,1}}\frac{d E_{i,1}}{d R_{1}}\right) +\beta \frac{d V_{i,2}(Z_{2})}{d M_{2}}\frac{dE_{j,1}}{dR_{1}}\nonumber \\&\quad +\, \beta \frac{d V_{i,2}(Z_{2})}{d L_{i,2}}\frac{dL_{i,2}}{dR_{1}} +\beta \frac{d V_{i,2}(Z_{2})}{d L_{j,2}}\frac{dL_{j,2}}{dR_{1}} +\beta \frac{d V_{i,2}(Z_{2})}{d R_{2}}\frac{dR_{2}}{dR_{1}} \nonumber \\&= \frac{1}{Y_{i,1}}\frac{\partial Y_{i,1}}{\partial R_{1}} +\beta \frac{d V_{i,2}(Z_{2})}{d L_{i,2}}\frac{dL_{i,2}}{dR_{1}} +\beta \frac{d V_{i,2}(Z_{2})}{d R_{2}}\phi _{R} \nonumber \\&= {\left\{ \begin{array}{ll} \beta \frac{d V_{n,2}(Z_{2})}{d R_{2}}\phi _{R}, & i = n,\\ -\frac{d\delta _{s}^{Y}(R_{1})}{dR_{1}}M_{1} +\beta \frac{d V_{s,2}(Z_{2})}{d L_{s,2}}\frac{dL_{s,2}}{dR_{1}} +\beta \frac{d V_{i,2}(Z_{2})}{d R_{2}}\phi _{R}, & i = s. \end{array}\right. } \end{aligned}$$
(71)

Therefore,

$$\begin{aligned} \frac{d W_{n}}{d R}&= - \frac{1}{Y_{n,0}-R} + \beta \frac{d V_{n,1}(Z_{1})}{d M_{1}}\frac{dE_{s,0}}{dR} +\beta \frac{d V_{n,1}(Z_{1})}{d L_{s,1}}\frac{dL_{s,1}}{dR} +\beta \frac{d V_{n,1}(Z_{1})}{d R_{1}}\phi _{R} \nonumber \\&= - \frac{1}{Y_{n,0}-R} + \beta \frac{d V_{n,1}(Z_{1})}{d M_{1}} \frac{dE_{s,0}}{dR} + \beta ^{2}\frac{d V_{n,2}(Z_{2})}{d M_{2}} \frac{dE_{s,1}}{dL_{s,1}}\frac{dL_{s,1}}{dR} + \beta ^{2} \frac{dV_{n,2}(Z_{2})}{d R_{2}}\phi _{R}^{2} \nonumber \\&= -\frac{1}{Y_{n,0}-R} + \beta \frac{d V_{n,1}(Z_{1})}{d M_{1}} \frac{dE_{s,0}}{dR} + \beta ^{2} \frac{d V_{n,2}(Z_{2})}{d M_{2}}\frac{dE_{s,1}}{dR} \end{aligned}$$
(72)

and

$$\begin{aligned} \frac{d W_{s}}{d R}&= -\frac{d\delta _{s}^{Y}(R)}{dR}M_{0} +\beta \frac{d V_{s,1}(Z_{1})}{d M_{1}}\frac{dE_{n,0}}{dR} +\beta \frac{d V_{s,1}(Z_{1})}{d L_{s,1}}\frac{dL_{s,1}}{dR} +\beta \frac{d V_{s,1}(Z_{1})}{d R_{1}}\phi _{R} \nonumber \\&= -\frac{d\delta _{s}^{Y}(R)}{dR}M_{0} +\beta \frac{d V_{s,1}(Z_{1})}{d M_{1}}\frac{dE_{n,0}}{dR} +\beta ^{2}\frac{d V_{s,2}(Z_{2})}{d L_{s,2}}\frac{dL_{s,2}}{dL_{s,1}} \frac{dL_{s,1}}{dR} \nonumber \\&\quad +\, \beta \left( -\frac{d\delta _{s}^{Y}(R_{1})}{dR_{1}}M_{1} -\beta \frac{d V_{s,2}(Z_{2})}{d L_{s,2}}L_{s,2} \frac{d\delta _{s}^{L}(R_{1})}{dR_{1}}M_{1} + \beta \frac{d V_{i,2}(Z_{2})}{d R_{2}}\phi _{R}\right) \phi _{R}\nonumber \\&= \beta \frac{d V_{s,1}(Z_{1})}{d M_{1}}\frac{dE_{n,0}}{dR} -\frac{d\delta _{s}^{Y}(R)}{dR}M_{0} -\frac{d\delta _{s}^{Y}(R_{1})}{dR_{1}} \beta \phi _{R}M_{1} \nonumber \\&\quad +\, \beta ^{2}\frac{d V_{s,2}(Z_{2})}{d L_{s,2}} \left( \frac{dL_{s,2}}{dL_{s,1}}\frac{dL_{s,1}}{dR} + \phi _{R} \frac{dL_{s,2}}{dR_{1}}\right) \nonumber \\&= \beta \frac{d V_{s,1}(Z_{1})}{d M_{1}}\frac{dE_{n,0}}{dR} -\left( \frac{d\delta _{s}^{Y}(R)}{dR}M_{0} +\frac{d\delta _{s}^{Y} (R_{1})}{dR_{1}}\beta \phi _{R}M_{1}\right) \nonumber \\&\quad -\, \beta ^{2}\frac{d V_{s,2}(Z_{2})}{d L_{s,2}}L_{s,2} \left( \frac{d\delta _{s}^{L}(R)}{dR}M_{0} + \frac{d\delta _{s}^{L} (R_{1})}{dR_{1}}\phi _{R}M_{1}\right) , \end{aligned}$$
(73)

where we use \(\phi _{R}^{2}\approx 0\). Evaluating these equations at \(R=0\) yields Eqs. (21) and (22).

1.7 Proof of Proposition 7

Since \(A_{n}\) does not affect the equilibrium levels of emission (when evaluated at \(R=0\)), it follows from Eqs. (55) and (56) that for each \(i \in \{n,s\}\), \(dE_{i,0}/dR\) is strictly decreasing in \(A_{n}\). Then, for each given level of \(\varepsilon ^{L}\), Eqs. (21) and (22) show that \(dW_{i}/dR\) is strictly increasing in \(A_{n}\). Since \(dW_{i}/dR\) is strictly increasing in \(\varepsilon ^{L}\), this implies that the threshold \(\varepsilon _{W_{i}}^{L}\) is strictly decreasing in \(A_{n}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakamoto, H., Ikefuji, M. & Magnus, J.R. Adaptation for Mitigation. Environ Resource Econ 75, 457–484 (2020). https://doi.org/10.1007/s10640-019-00396-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10640-019-00396-x

Keywords

JEL Classification

Navigation