Advertisement

A Semiparametric Smooth Coefficient Estimator for Recreation Demand

  • Weiwei LiuEmail author
  • Kevin J. Egan
Article
  • 5 Downloads

Abstract

We introduce a semiparametric smooth coefficient estimator for recreation demand data that allows more flexible modeling of preference heterogeneity. We show that our sample of visitors each has an individual statistically significant price coefficient estimate leading to clearly nonparametric consumer surplus and willingness to pay (WTP) distributions. We also show mean WTP estimates that are different in economically meaningful ways for every demographic variable we have for our sample of beach visitors. This flexibility is valuable for future researchers who can include any variables of interest beyond the standard demographic variables we have included here. And the richer results, price elasticities, consumer surplus and WTP estimates, are valuable to planners and policymakers who can easily see how all these estimates vary with characteristics of the population of interest.

Keywords

Consumer surplus Recreation demand Semiparametric model Travel cost Willingess to pay 

JEL Classification

C14 Q51 

Notes

References

  1. Allenby GM, Arora N, Ginter JL (1998) On the heterogeneity of demand. J Mark Res 35(3):384–389.  https://doi.org/10.2307/3152035 Google Scholar
  2. Allenby GM, Rossi PE (1999) Marketing models of consumer heterogeneity. J Econom 89(1–2):57–78.  https://doi.org/10.1016/S0304-4076(98)00055-4 Google Scholar
  3. Andrews T (2001) A contingent valuation survey of improved water quality in the Brandywine River: an example of applied economics in the classroom. Pa Econ Rev 10:1–13Google Scholar
  4. Awondo SN, Egan KJ, Dwyer DF (2011) Increasing beach recreation benefits by using wetlands to reduce contamination. Mar Resour Econ 26(1):1–15.  https://doi.org/10.5950/0738-1360-26.1.1 Google Scholar
  5. Bach P, Farbmacher H, Spindle M (2017) Semiparametric count data modeling with an application to health service demand. Econom Stat.  https://doi.org/10.1016/j.ecosta.2017.08.004 Google Scholar
  6. Baerenklau KA (2010) A latent class approach to modeling endogenous spatial sorting in Zonal recreation demand models. Land Econ 86(4):800–816.  https://doi.org/10.3368/le.86.4.800 Google Scholar
  7. Boardman A, Greenberg D, Vining A, Weimer D (2017) Cost-benefit analysis: concepts and practice, th edn. Cambridge, Cambridge University PressGoogle Scholar
  8. Bockstael NE, Strand IE Jr (1987) The effect of common sources of regression error on benefit estimates. Land Econ 63(1):11–20.  https://doi.org/10.2307/3146652 Google Scholar
  9. Boxall P, Adamowicz W (2002) Understanding heterogeneous preferences in random utility models: a latent class approach. Environ Resour Econ 23(4):421–442.  https://doi.org/10.1023/A:1021351721619 Google Scholar
  10. Bujosa A, Riera A, Hicks RL (2010) Combining discrete and continuous representations of preference heterogeneity: a latent class approach. Environ Resour Econ 47(4):477–493.  https://doi.org/10.1007/s10640-010-9389-y Google Scholar
  11. Cameron AC, Trivedi PK (2003) Essentials of count data regression. In: Baltagi BH (ed) A Companion to theoretical econometrics. Oxford, Blackwell Publishing Ltd, pp 331–348.  https://doi.org/10.1002/9780470996249.ch16 Google Scholar
  12. Cameron AC, Trivedi PK (2005) Microeconometrics: methods and applications. Cambridge University Press, CambridgeGoogle Scholar
  13. Cameron AC, Trivedi PK (2013) Regression analysis of count data. Cambridge University Press, CambridgeGoogle Scholar
  14. Cooper J (2000) Nonparametric and semi-nonparametric recreational demand analysis. Am J Agric Econ 82:451–462.  https://doi.org/10.1111/0002-9092.00038 Google Scholar
  15. Corrigan JR, Kling CL, Zhao J (2008) Willingness to pay and the cost of commitment: an empirical specification and test. Environ Resour Econ 40(2):285–298.  https://doi.org/10.1007/s10640-007-9153-0 Google Scholar
  16. Creel M, Loomis J (1997) Semi-nonparametric distribution-free dichotomous choice contingent valuation. J Environ Econ Manag 32(3):341–358.  https://doi.org/10.1006/jeem.1997.0972 Google Scholar
  17. Dillman D (2007) Mail and internet surveys, the tailored design method, 2nd edn. Wiley, New YorkGoogle Scholar
  18. Egan K, Corrigan JR, Dwyer DF (2015) Three reasons to use annual payments in contingent valuation surveys: convergent validity, discount rates, and mental accounting. J Environ Econ Manag 72:123–136.  https://doi.org/10.1016/j.jeem.2015.05.002 Google Scholar
  19. Egan K, Herriges J (2006) Multivariate count data regression models with individual panel data from an on-site sample. J Environ Econ Manag 52(2):567–581.  https://doi.org/10.5950/0738-1360-26.1.1 Google Scholar
  20. Englin J, Shonkwiler JS (1995) Modeling recreation demand in the presence of unobservable travel costs: toward a travel price model. J Environ Econom Manag 29(3):368–377.  https://doi.org/10.1006/jeem.1995.1053 Google Scholar
  21. Frölich MF (2006) Non-parametric regression for binary dependent variables. Econom J 9(3):511–540.  https://doi.org/10.1111/j.1368-423X.2006.00196.x Google Scholar
  22. Gurmu S, Rilstone P, Stern S (1999) Semiparametric estimation of count regression models. J Econom 88(1):123–150.  https://doi.org/10.1016/S0304-4076(98)00026-8 Google Scholar
  23. Haab TC, McConnell KE (1996) Count data models and the problem of zeros in recreation demand analysis. Am J Agric Econ 78(1):89–102.  https://doi.org/10.2307/1243781 Google Scholar
  24. Hall P, Li Q, Racine JS (2007) Nonparametric estimation of regression functions in the presence of irrelevant regressors. Rev Econ Stat 89(4):784–789.  https://doi.org/10.1162/rest.89.4.784 Google Scholar
  25. Henderson DJ, Kumbhakar SC, Parmeter CF (2012) A simple method to visualize results in nonlinear regression models. Econ Lett 117(3):578–581.  https://doi.org/10.1016/j.econlet.2012.07.040 Google Scholar
  26. Horowitz JL (1997) Bootstrap methods in econometrics: theory and numerical performance. In: Krepsand DM, Wallis KF (eds) Advances in economics and econometrics: theory and applications: seventh world congress, vol 3. Cambridge University Press, Cambridge, pp 188–222.  https://doi.org/10.1017/CBO9781139051996.007 Google Scholar
  27. Horowitz JL (2001) The bootstrap. In: Heckmanand JJ, Leamer E (eds) Handbook of econometrics, vol 5. Elsevier, pp 3159–3228.  https://doi.org/10.1016/S1573-4412(01)05005-X
  28. Hynes S, Greene W (2013) A panel travel cost model accounting for endogenous stratification and truncation: a latent class approach. Land Econ 89(1):177–192.  https://doi.org/10.3368/le.89.1.177 Google Scholar
  29. Jaime MM, Tudela AM (2011) Valuing a water recreation facility using semi parametric estimators in the travel cost method. Cuadernos de Economía 30:217–233Google Scholar
  30. Landry CE, Liu H (2009) A semi-parametric estimator for revealed and stated preference data–an application to recreational beach visitation. J Environ Econ Manag 57(2):205–218.  https://doi.org/10.1016/j.jeem.2008.05.002 Google Scholar
  31. Li Q, Huang CJ, Li D, Fu T-T (2002) Semiparametric smooth coefficient models. J Bus Econ Stat 20(3):412–422.  https://doi.org/10.1198/073500102288618531 Google Scholar
  32. Li Q, Maasoumi E, Racine JS (2009) A nonparametric test for equality of distributions with mixed categorical and continuous data. J Econom 148(2):186–200.  https://doi.org/10.1016/j.jeconom.2008.10.007 Google Scholar
  33. Li Q, Ouyang D, Racine JS (2013) Categorical semiparametric varying-coefficient models. J Appl Econom 28(4):551–579.  https://doi.org/10.1002/jae.1261 Google Scholar
  34. Li Q, Racine JS (2007) Nonparametric econometrics: theory and practice. Princeton University Press, PrincetonGoogle Scholar
  35. Li Q, Racine JS (2010) Smooth varying-coefficient estimation and inference for qualitative and quantitative data. Econom Theory 26(06):1607–1637.  https://doi.org/10.1017/S0266466609990739 Google Scholar
  36. Liu W (2014) Modeling gasoline demand in the United States: a flexible semiparametric approach. Energy Econ 45:244–253.  https://doi.org/10.1016/j.eneco.2014.07.004 Google Scholar
  37. Liu W (2015) Gasoline taxes or efficiency standards? A heterogeneous household demand analysis. Energy Policy 80:54–64.  https://doi.org/10.1016/j.enpol.2015.01.029 Google Scholar
  38. McLeod L (2011) A nonparametric versus latent class model of general practitioner utilization: evidence from Canada. J Health Econ 30(6):1261–1279.  https://doi.org/10.1016/j.jhealeco.2011.08.005 Google Scholar
  39. Misra SK, Huang CL, Ott SL (1991) Consumer willingness to pay for pesticide-free fresh produce. West J Agric Econ 16(2):218–227Google Scholar
  40. Morey E, Thacher J, Breffle W (2006) Using angler characteristics and attitudinal data to indentify environmental preference classes: a latent-class model. Environ Resour Econ 34(1):91–115.  https://doi.org/10.1007/s10640-005-3794-7 Google Scholar
  41. Poe GL, Giraud KL, Loomis JB (2005) Computational methods for measuring the difference of empirical distributions. Am J Agric Econ 87(2):353–365Google Scholar
  42. Poe GL, Severance-Lossin EK, Welsh MP (1994) Measuring the difference (X–Y) of simulated distributions: a convolutions approach. Am J Agric Econ 76(4):904–915.  https://doi.org/10.2307/1243750 Google Scholar
  43. Poe GL, Welsh MP, Champ PA (1997) Measuring the difference in mean willingness to pay when dichotomous choice contingent valuation responses are not independent. Land Econ 73(2):255–267Google Scholar
  44. Provencher B, Baerenklau KA, Bishop RC (2002) A finite mixture logit model of recreational angling with serially correlated random utility. Am J Agric Econ 84(4):1066–1075.  https://doi.org/10.1111/1467-8276.00054 Google Scholar
  45. Racine JS (2008) Nonparametric econometrics: a primer. Found Trends Econom 3(1):1–88.  https://doi.org/10.1561/0800000009 Google Scholar
  46. Robinson PM (1988) Root-N-consistent semiparametric regression. Econometrica 56(4):931–954.  https://doi.org/10.2307/1912705 Google Scholar
  47. Scarpa R, Thiene M, Tempesta T (2007) Latent class count models of total visitation demand: days out hiking in the Eastern Alps. Environ Resour Econ 38(4):447–460.  https://doi.org/10.1007/s10640-007-9087-6 Google Scholar
  48. Silverman BW (1986) Density estimation for statistics and data analysis. Chapman & Hall, LondonGoogle Scholar
  49. Thompson E, Berger M, Blomquist G, Allen S (2002) Valuing the arts: a contingent valuation approach. J Cult Econ 26(2):87–113.  https://doi.org/10.1023/A:1014426202110 Google Scholar
  50. Train KE (1998) Recreation demand models with taste differences over people. Land Econ 74(2):230–2394.  https://doi.org/10.2307/3147053 Google Scholar
  51. Wedel M, Kamakura W, Arora N, Bemmaor A, Chiang J, Elrod T, Poulsen CS (1999) Discrete and continuous representations of unobserved heterogeneity in choice modeling. Mark Lett 10(3):219–232.  https://doi.org/10.1023/A:100805431 Google Scholar
  52. Whitehead JC, Dumas CF, Herstine J, Hill J, Buerger B (2008) Valuing beach access and width with revealed and stated preference data. Marine Resour Econ 23(2):119–135.  https://doi.org/10.1086/mre.23.2.42629607 Google Scholar
  53. Winkelmann R (2000) Econometric analysis of count data. Springer, BerlinGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of EconomicsTexas Christian UniversityFort WorthUSA
  2. 2.Department of EconomicsUniversity of ToledoToledoUSA

Personalised recommendations