Advertisement

Environmental and Resource Economics

, Volume 72, Issue 1, pp 109–133 | Cite as

On the Relationship Between GHGs and Global Temperature Anomalies: Multi-level Rolling Analysis and Copula Calibration

  • Elettra Agliardi
  • Thomas AlexopoulosEmail author
  • Christian Cech
Article
  • 115 Downloads

Abstract

The relationship between GHG emissions and global warming is studied through multi-level rolling analysis to assess whether or not there are increasing rates in global climate change as a result of higher levels of anthropogenic emissions, as we move forward in time. Furthermore, in order to assess whether we observe tail dependence, representing simultaneous occurrence of extreme events, we employ copula methods. Our main findings suggest a constant effect of emissions on temperature anomalies especially in the last decades. On the other hand we observe positive upper tail dependence in our copula analyses. This implies a comparably high probability of joint extreme large values (i.e., high temperatures and emission concentrations). As a guide to policy, it suggests to keep down extreme events in emissions to prevent possibilities of extreme warmings.

Keywords

GHGs Global temperature anomalies Rolling analysis Copulas 

JEL Classification

Q54 Q51 C53 C69 

References

  1. Allan RP, Liu C, Loeb NG, Palmer MD, Roberts M, Smith D, Vidale PL (2014) Changes in global net radiative imbalance 1985–2012. Geophys Res Lett 41:4398–4405.  https://doi.org/10.1002/2014GL060962 CrossRefGoogle Scholar
  2. Allen M, Stott PR, Mitchell JFB, Schnur R, Delworth TL (2000) Quantifying the uncertainty in forecasts of anthropogenic climate change. Nature 407:617–620CrossRefGoogle Scholar
  3. Allen MR, Frame DJ, Huntingford C, Jones CD, Lowe JA, Meinshausen M, Meinshausen N (2009) Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature 458:1163–1166CrossRefGoogle Scholar
  4. Anderson TR, Hawkins E, Jones PD (2016) CO2, the greenhouse effect and global warming: from the pioneering work of Arrhenius and Callendar to today’s Earth System Models. Endeavour 40(3):178–187CrossRefGoogle Scholar
  5. Barr S, Gilg A, Shaw G (2011) Citizens, consumers and sustainability: (re)framing environmental practice in an age of climate change. Glob Environ Change 21:1224–1233CrossRefGoogle Scholar
  6. Berkeley, Berkeley Earth (2016) A measured approach: climate science + strategic analysis. http://berkeleyearth.org/data/. Accessed Oct 2017
  7. Boykoff MT (2014) Media discourse on the climate slowdown. Nat Clim Change 4:156–158.  https://doi.org/10.1038/nclimate2156 CrossRefGoogle Scholar
  8. Boykoff MT, Boykoff JM (2004) Balance as bias: global warming and the US prestige press. Glob Environ Change 14:125–136.  https://doi.org/10.1016/j.gloenvcha.2003.10.001 CrossRefGoogle Scholar
  9. Brechmann EC, Schepsmeier U (2013) Modeling dependence with C- and D-Vine copulas: the R package CDVine. J Stat Softw 52:3CrossRefGoogle Scholar
  10. Brown PT, Li W, Li L, Ming Y (2014) Top-of-atmosphere radiative contribution to unforced decadal global temperature variability in climate models. Geophys Res Lett 41:5175–5183.  https://doi.org/10.1002/2014GL060625 CrossRefGoogle Scholar
  11. Castruccio S, McInerney DJ, Stein ML, Crouch FL, Jacob RL, Moyer EJ (2014) Statistical emulation of climate model projections based on precomputed GCM runs. J Clim 27:1829–1844CrossRefGoogle Scholar
  12. Chen Y, Li B, Li Z, Shi X (2014) Quantitatively evaluating the effects of CO2 emission on temperature rise. Quat Int 336:171–175CrossRefGoogle Scholar
  13. Clarke L, Edmonds J, Jacoby H, Pitcher H, Reilly J, Richels R (2007) Scenarios of greenhouse gas emissions and atmospheric concentrations. Sub-report 2.1A of synthesis and assessment product 2.1 by the U.S. climate change science program and the subcommittee on global change research. Department of Energy, Office of Biological & Environmental Research, WashingtonGoogle Scholar
  14. Florides AG, Christodoulides P (2008) Global warming and carbon dioxide through sciences. Environ Int 35:390–401CrossRefGoogle Scholar
  15. Fujino J, Nair R, Kainuma M, Masui T, Matsuoka Y (2006) Multi-gas mitigation analysis on stabilization scenarios using AIM global model. Multigas mitigation and climate policy. Energy J Special Issue 3#:343–354Google Scholar
  16. Genest C, Rivest LP (1993) Statistical inference procedures for bivariate Archimedian copulas. J Am Stat Assoc 88:1034–1043CrossRefGoogle Scholar
  17. Gillett NP, Arora VK, Matthews D, Allen MR (2013) Constraining the ratio of global warming to cumulative CO2 emissions using CMIP5 simulation. J Clim.  https://doi.org/10.1175/JCLI-D-12-00476.1 Google Scholar
  18. GISTEMP (2016) GISS Surface temperature analysis (GISTEMP). NASA Goddard Institute for Space Studies. https://data.giss.nasa.gov/gistemp/. Accessed Oct 2017
  19. Goodwin P, Williams RG, Ridgwell A (2015) Sensitivity of climate to cumulative carbon emissions due to compensation of ocean heat and carbon uptake. Nat Geosci 8:29–34.  https://doi.org/10.1038/ngeo2304 CrossRefGoogle Scholar
  20. Hansen J, Lebedeff S (1987) Global trends of measured surface air temperature. J Geophys Res 92(11):13345–13372CrossRefGoogle Scholar
  21. Hansen J, Sato M, Ruedy R, Nazarenko L, Lacis A, Schmidt GA, Russell G, Aleinov I, Bauer M, Bauer S, Bell N, Cairns B, Canuto V, Chandler M, Cheng Y, Del Genio A, Faluvegi G, Fleming E, Friend A, Hall T, Jackman C, Kelley M, Kiang N, Koch D, Lean J, Lerner J, Lo K, Menon S, Miller R, Minnis P, Novakov T, Oinas V, Perlwitz Ja, Perlwitz Ju, Rind D, Romanou A, Shindell D, Stone P, Sun S, Tausnev N, Thresher D, Wielicki B, Wong T, Yao M, Zhang S (2005) Efficacy of climate forcings. J Geophys Res 110:D18104CrossRefGoogle Scholar
  22. Hansen J, Ruedy R, Sato M, Lo K (2010) Global surface temperature change. Rev Geophys 48:1–29CrossRefGoogle Scholar
  23. Heal G, Millner A (2014) Uncertainty and decision making in climate change economics. Rev Environ Econ Policy 8(1):120–137CrossRefGoogle Scholar
  24. Hijioka Y, Matsuoka Y, Nishimoto H, Masui M, Kainuma M (2008) Global GHG emissions scenarios under GHG concentration stabilization targets. J Glob Environ Eng 13:97–108Google Scholar
  25. Höhne N, Moltmann S (2009) Sharing the effort under a global carbon budget. Ecofys. https://wwf.fi/mediabank/1058.pdf. Accessed April 2018
  26. Höök M, Tang X (2013) Depletion of fossil fuels and anthropogenic climate change. A review. Energy Policy 53:797–809CrossRefGoogle Scholar
  27. Howard PH, Sterner T (2017) Few and not so far between: a meta-analysis of climate damage estimantes. Environ Resour Econ 68:197–225CrossRefGoogle Scholar
  28. IPCC (2013) Climate change 2013. The physical science basis. http://www.ipcc.ch/report/ar5/wg1/. Accessed April 2018
  29. IPCC (2014) Climate change 2014. Synthesis report, summary for policymakers. https://www.ipcc.ch/pdf/assessment-report/ar5/syr/AR5_SYR_FINAL_SPM.pdf. Accessed April 2018
  30. Laepple T, Huybers P (2014) Global and regional variability in marine surface temperatures. Geophys Res Lett 41:2528–2534.  https://doi.org/10.1002/2014GL059345 CrossRefGoogle Scholar
  31. Latif M (2010) Uncertainty in climate change projections. J Geochem Explor 110:1–7CrossRefGoogle Scholar
  32. MacDougall AH (2016) The transient response to cumulative CO2 emissions: a review. Curr Clim Change Rep 2:39–47.  https://doi.org/10.1007/s40641-015-0030-6 CrossRefGoogle Scholar
  33. MacDougall AH, Friedlingstein P (2015) The origin and limits of the near proportionality between climate warming and cumulative CO2 emissions. J Clim 28:4217–4230.  https://doi.org/10.1175/JCLI-D-14-00036.1 CrossRefGoogle Scholar
  34. Matthews D, Gillett NG, Stott PA, Zickfeld K (2009) The proportionality of global warming to cumulative carbon emissions. Nature 489:829–833CrossRefGoogle Scholar
  35. Meinshausen M, Smith SJ, Calvin K, Daniel JS, Kainuma MLT, Lamarque J-F, Matsumoto K, Montzka SA, Raper SCB, Riahl K, Thomson A, Velders GJM, van Vuuren DPP (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Change 109:213–241CrossRefGoogle Scholar
  36. Millner A, Dietz S, Heal G (2013) Scientific ambiguity and climate policy. Environ Resour Econ 55(1):21–46CrossRefGoogle Scholar
  37. Nazarenko L, Schmidt GA, Miller RL, Tausnev N, Kelley M, Ruedy R, Russell GL, Aleinov I, Bauer M, Bauer S, Bleck R, Canut V, Cheng Y, Clune TL, Del Genio AD, Faluvegi G, Hansen JE, Healy RJ, Kiang NY, Koch D, Lacis A, LeGrande AN, Lerner J, Lo K, Menon S, Oinas V, Perlwitz J, Puma JM, Rind D, Romanou A, Sato M, Shindell DT, Sun S, Tsigaridis K, Unger N, Voulgarakis A, Yao MS, Zhang J (2015) Future climate change under RCP emission scenarios with GISS ModelE2. J Adv Model Earth Syst 7:244–267.  https://doi.org/10.1002/2014ms000403 CrossRefGoogle Scholar
  38. Nelsen RB (2006) An introduction to copulas, 2nd edn. Springer, New YorkGoogle Scholar
  39. NOAA, National Centers for Environmental Information (2016) Global surface temperature anomalies. https://www.ncdc.noaa.gov/oa/climate/research/1998/anomalies/anomalies.html. Accessed Oct 2017
  40. Pindyck RS (2017) The use and misuse of models for climate policy. Rev Environ Econ Policy 11:100–114CrossRefGoogle Scholar
  41. Riahi K, Gruebler A, Nakicenovic N (2007) Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol Forecast Soc Change 74(7):887–935CrossRefGoogle Scholar
  42. Sklar A (1959) Fonctions de Répartition à n dimension et leurs Marges. Publications de l’institut de l’Université de Paris 8:229–231Google Scholar
  43. Smith SJ, Wigley TML (2006) Multi-gas forcing stabilization with the MiniCAM. Energy J Special Issue 3#:373–391Google Scholar
  44. Solomon S, Daniel JS, Sanford TJ, Murphy DM, Plattner G-K, Knutti R, Friedlingstein P (2010) Persistence of climate changes due to a range of greenhouse gases. PNAS 107:18354–18359CrossRefGoogle Scholar
  45. Stern N (2008) The economics of climate change. The stern review. Cambridge University Press, CambridgeGoogle Scholar
  46. Taleb NN, Read R, Douady R, Norman J, Bar-Yam Y (2014) The precautionary principle (with applications to the genetic modification of organisms). Extreme risk initiative. NYU School of Engineering Working paper series, pp 1–24Google Scholar
  47. Tol R (2005) Adaptation and Mitigation: trade-offs in substance and methods. Environ Sci Policy 8:572–578CrossRefGoogle Scholar
  48. Tollefson J (2014) Climate change: the case of the missing heat. Nature 505:276–278.  https://doi.org/10.1038/505276a CrossRefGoogle Scholar
  49. UNFCCC, United Nations Framework Convention on Climate Change (1992) United Nations conference on environment and development, Rio de Janeiro, BrasilGoogle Scholar
  50. Weitzman ML (2009) On modeling and interpreting the economics of catastrophic climate change. Rev Econ Stat 91(1):1–19CrossRefGoogle Scholar
  51. Wise MA, Calvin KV, Thomson AM, Clarke LE, Bond-Lamberty B, Sands RD, Smith SJ, Janetos AC, Edmonds JA (2009) Implications of limiting CO2 concentrations for land use and energy. Science 324:1183–1186CrossRefGoogle Scholar
  52. Witt DA, De Boer J, Hedlung N, Osseweijer P (2016) A new tool to map the major worldviews in the Netherlands and USA, and explore how they relate to climate change. Environ Sci Policy 63:101–112CrossRefGoogle Scholar
  53. Zickfeld K, Eby M, Matthews HD, Weaver AJ (2009) Setting cumulative emission targets to reduce the risk of dangerous climate change. PNAS 106:16129–16134CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of EconomicsUniversity of BolognaBolognaItaly
  2. 2.Department of EconomicsUniversity of PeloponneseTripolisGreece
  3. 3.University of Applied Sciences BFI ViennaViennaAustria

Personalised recommendations