Can Technology-Specific Deployment Policies Be Cost-Effective? The Case of Renewable Energy Support Schemes
Abstract
While there is relatively limited disagreement on the general need for supporting the deployment of renewable energy sources for electricity generation (RES-E), there are diverging views on whether the granted support levels should be technology-neutral or technology-specific. In this review paper we question the frequently stressed argument that technology-neutral schemes will promote RES-E deployment cost-effectively. We use a simple partial equilibrium model of the electricity sector with one representative investor as a vehicle to synthesize the existing literature, and review potential rationales for technology-specific RES-E support. The analysis addresses market failures associated with technological development, long-term risk taking, path dependencies as well as various external costs, all of which drive a wedge between the private and the social costs of RES-E deployment. Based on analytical insight and a review of empirical literature, we conclude that the relevance of these market failures is typically heterogeneous across different RES-E technologies. The paper also discusses a number of possible caveats to implementing cost-effective technology-specific support schemes in practice, including the role of various informational and politico-economic constraints. While these considerations involve important challenges, neither of them suggests an unambiguous plea for technology-neutral RES-E support policies either. We close by highlighting principles for careful RES-E policy design, and by outlining four important avenues for future research.
Keywords
Technology development Renewable energy sources Support schemes Cost-effectivenessJEL Classification
H23 O33 Q42Notes
Acknowledgements
Research for this article has been funded by the German Helmholtz Association under Grant HA-303 as well as the Swedish Research Council Formas. We are particularly grateful to Editor David Popp and two anonymous referees for their numerous constructive comments, which have helped to improve the article significantly. Moreover, the article has benefited from discussions with Erik Gawel and Alexandra Purkus. All remaining errors reside solely with the authors.
References
- Aalbers R, Shestalova V, Kocis V (2013) Innovation policy for directing technical change in the power sector. Energy Policy 63:1240–1250CrossRefGoogle Scholar
- Abbasi SA, Abbasi N (2000) The likely adverse environmental impacts of renewable energy sources. Appl Energy 65:121–144CrossRefGoogle Scholar
- Acemoglu D, Aghion P, Bursztyn L, Hemous D (2012) The Environment and Directed Technical Change. Am Econ Rev 102:131–166CrossRefGoogle Scholar
- Aghion P, David PA, Foray D (2009) Science, technology and innovation for economic growth: linking policy research and practice in ‘STIG Systems’. Res Policy 38:681–693CrossRefGoogle Scholar
- Aghion P, Dechezlepretre A, Hemous D, Martin R, van Reenen J (2012) Carbon taxes, path dependency and directed technical change : evidence from the auto industry. NBER Working Paper, National Bureau of Economic Research (NBER), Cambridge, MAGoogle Scholar
- Anger N, Böhringer C, Oberndorfer U (2008) Public interest vs. interest groups: allowance allocation in the EU emissions trading scheme. Discussion Paper No. 08-023, Zentrum fuer Europaeische Wirtschaftsforschung (ZEW), MannheimGoogle Scholar
- Argote L, Epple D (1990) Learning curves in manufacturing. Science 247:920–924CrossRefGoogle Scholar
- Arrow KJ, Lind RC (1970) Uncertainty and the evaluation of public investment decisions. Am Econ Rev 60:364–378Google Scholar
- Arthur WB (1989) Competing technologies, increasing returns, and lock-in by historical small events. Econ J 99:116–131CrossRefGoogle Scholar
- Azar C, Sandén BA (2011) The elusive quest for technology-neutral policies. Environ Innov Soc Transit 1:135–139CrossRefGoogle Scholar
- Bäckström K, Lundmark R, Söderholm P (2014) Public policies and solar PV innovation: an empirical study based on patent data. In: 37th International IAEE conference, 15-18 June, New York, USAGoogle Scholar
- Bennear LS, Stavins RN (2007) Second-best theory and the use of multiple policy instruments. Environ Resour Econ 37:111–129CrossRefGoogle Scholar
- Bergek A, Jacobsson S (2010) Are tradable green certificates a cost-efficient policy driving technical change or a rent-generating machine? Lessons from Sweden 2003–2008. Energy Policy 38:1255–1271CrossRefGoogle Scholar
- Bergmann A, Colombo S, Hanley N (2008) Rural versus urban preferences for renewable energy developments. Ecol Econ 65:616–625CrossRefGoogle Scholar
- Bläsi A, Requate T (2010) Feed-in-tariffs for electricity from renewable energy resources to move down the learning curve? Public Financ Manag 10:213–250Google Scholar
- BMWi (2015) EEG in Zahlen: Vergütungen, Differenzkosten und EEG-Umlage 2000 bis 2016. Bundesministerium für Wirtschaft und Energie (BMWi), BerlinGoogle Scholar
- BMWi (2016) Revision of the renewable energy sources act-key points (revised) of the proposal by the Federal Ministry for Economic Affairs and Energy. Bundesministerium für Wirtschaft und Energie (BMWi), BerlinGoogle Scholar
- Bollinger B, Gillingham K (2012) Peer effects in the diffusion of solar photovoltaic panels. Mark Sci 31:900–912CrossRefGoogle Scholar
- Bollinger B, Gillingham K (2014) Learning-by-doing in solar photovoltaic installations. Yale University, New Haven, CT, Discussion PaperGoogle Scholar
- Braun FG, Schmidt-Ehmcke J, Zloczysti P (2010) Innovative activity in wind and solar technology: empirical evidence on knowledge spillovers using patent data. Discussion Paper 993, Deutsches Institut für Wirtschaftsforschung (DIW), BerlinGoogle Scholar
- Budish E, Roin BN, Williams H (2015) Do firms underinvest in long-term research? Evidence from cancer clinical trials. Am Econ J 105:2044–2085Google Scholar
- Dechezleprêtre A, Martin R, Mohnen M (2013) Knowledge spillovers from clean and dirty technologies: a patent citation analysis. Discussion Paper, London School of Economics (LSE), LondonGoogle Scholar
- del Rio P, Cerdá E (2014) The policy implications of the different interpretations of the cost-effectiveness of renewable electricity support. Energy Policy 64:364–372CrossRefGoogle Scholar
- del Rio P, Linares P (2014) Back to the future? Rethinking auctions for renewable electricity support. Renew Sustain Energy Rev 35:42–56CrossRefGoogle Scholar
- Dobers GM, Oehlmann M, Liebe U, Meyerhoff J (2015) Einstellungen und Präferenzen zum Ausbau Erneuerbarer Energien. Ökologisches Wirtschaften 30:16–17CrossRefGoogle Scholar
- Drechsler M, Ohl C, Meyerhoff J, Eichhorn M, Monsees J (2011) Combining spatial modeling and choice experiments for the optimal spatial allocation of wind turbines. Energy Policy 39:3845–3854CrossRefGoogle Scholar
- European Commission (2013a) Delivering the internal electricity market and making the most of public intervention. COM, (2013) 7243 final. European Commission, BrusselsGoogle Scholar
- European Commission (2013b) European Commission guidance for the design of renewables support schemes. SWD, (2013) 439 final. European Commission, BrusselsGoogle Scholar
- European Commission (2013c) Report from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: Renewable Energy Progress Report. COM(2013) 175, European Commission, BrusselsGoogle Scholar
- Fischer C, Newell RG (2008) Environmental and technology policies for climate change mitigation. J Environ Econ Manag 55:142–162CrossRefGoogle Scholar
- Fischer C, Preonas L (2010) Combining policies for renewable energy: is the whole less than the sum of its parts? Int Rev Environ Resour Econ 4:51–92CrossRefGoogle Scholar
- Fischer C, Torvanger A, Shrivastava MK, Sterner T, Stigson P (2012) How should support for climate-friendly technologies be designed? Ambio 41:33–45CrossRefGoogle Scholar
- Foxon T, Pearson P (2008) Overcoming barriers to innovation and diffusion of cleaner technologies: some features of a sustainable innovation policy regime. J Clean Prod 16:S148–S161CrossRefGoogle Scholar
- Frontier Economics (2012) Die Zukunft des EEG - Handlungsoptionen und Reformansätze. Bericht für die EnBW AG. Frontier Economics Ltd., LondonGoogle Scholar
- Frontier Economics (2014) Technologieoffene Ausschreibungen für Erneuerbare Energien. Ein Bericht für EFET Deutschland. Frontier Economics Ltd., LondonGoogle Scholar
- Frontier Economics, r2b (2013) Effizientes Regime für den Ausbau der EE, Weiterentwicklung des Energy-Only-Marktes und Erhaltung des EU-ETS. Ein Bericht für die RWE AG. Frontier Economics Ltd., LondonGoogle Scholar
- Fürsch M, Golling C, Nicolosi M, Wissen R, Lindenberger D (2010) European RES-E Policy Analysis - A model based analysis of RES-E deployment and its impact on the conventional power market. Energiewirtschaftliches Institut an der Universität Köln, KölnGoogle Scholar
- Galinato GI, Yoder JK (2010) An integrated taxsubsidy policy for carbon emission reduction. Resour Energy Econ 32:310–326CrossRefGoogle Scholar
- Gawel E, Strunz S, Lehmann P (2014) A public choice view on the climate and energy policy mix in the EU—how do the emissions trading scheme and support for renewable energies interact? Energy Policy 64:175–182CrossRefGoogle Scholar
- Gawel E, Lehmann P, Purkus A, Söderholm P, Witte K (2017) Rationales for technology-specific RES support and their relevance for German policy. Energy Policy 102:16–26CrossRefGoogle Scholar
- Geels FW (2004) From sectoral systems of innovation to socio-technical systems. Insights about dynamics and change from sociology and institutional theory. Res Policy 33:897–920CrossRefGoogle Scholar
- Graziano M, Gillingham K (2015) Spatial patterns of solar photovoltaic system adoption: the influence of neighbors and the built environment. J Econ Geogr 15:815–839CrossRefGoogle Scholar
- Grubb M (1997) Technologies, energy systems and the timing of CO2 emissions abatement: an overview of economic issues. Energy Policy 25:159–172CrossRefGoogle Scholar
- Grubler A, Aguayo F, Gallagher K, Hekkert M, Jiang K, Mytelka L, Neij L, Nemet GF, Wilson C (2012) Chapter 24—Policies for the energy technology innovation system (ETIS). In: Global energy assessment—toward a sustainable future. Cambridge University Press/International Institute for Applied Systems Analysis, Cambridge/LaxenburgGoogle Scholar
- Hall BH, Jaffe AB, Trajtenberg M (2005) Market value and patent citations. RAND J Econ 36:16–38Google Scholar
- Held A, Ragwitz M, Gephart M, De Visser E, Klessmann C (2014) Design features of support schemes for renewable electricity, Task 2 report. Ecofys, BrusselsGoogle Scholar
- Helm D (2010) Government failure, rent-seeking, and capture: the design of climate change policy. Oxf Rev Econ Policy 26:182–196CrossRefGoogle Scholar
- Hirth L (2013) The market value of variable renewables. Energy Econ 38:218–236CrossRefGoogle Scholar
- Hirth L, Mueller S (2015) System-friendly wind and solar power. IEA Insight Paper, International Energy Agency (IEA), ParisGoogle Scholar
- Hirth L, Ueckerdt F, Edenhofer O (2015) Integration costs revisited—an economic framework of wind and solar variability. Renew Energy 74:925–939CrossRefGoogle Scholar
- Hitaj C, Schymura M, Löschel A (2014) The Impact of a Feed-In Tariff on Wind Power Development in Germany. Discussion Paper, Zentrum fuer Europaeische Wirtschaftsforschung (ZEW), MannheimGoogle Scholar
- Hoppmann J, Huenteler J, Girod B (2014) Compulsive policy-making–the evolution of the German feed-in tariff system for solar photovoltaic power. Res Policy 43:1422–1441CrossRefGoogle Scholar
- IEA (2000) Experience Curves for Technology Policy. International Energy Agency (IEA), ParisGoogle Scholar
- Irwin DA, Klenow PJ (1994) Learning-by-doing spillovers in the semiconductor industry. J Polit Econ 102:1200–1227CrossRefGoogle Scholar
- Jacobsson S, Bergek A (2011) Innovation system analyses and sustainability transitions: contributions and suggestions for research. Environ Innov Soc Transit 1:41–57CrossRefGoogle Scholar
- Jacobsson S, Bergek A, Finon D, Lauber V, Mitchell C, Toke D, Verbruggen H (2009) EU renewable energy support policy: faith or facts? Energy Policy 37:2143–2146CrossRefGoogle Scholar
- Jaffe AB, Trajtenberg M (1999) International knowledge flows: evidence from patent citations. Econ Innov New Technol 8:105–136CrossRefGoogle Scholar
- Jägemann C (2014) A note on the inefficiency of technology- and region-specific renewable energy support: the German case. Zeitschrift für Energiewirtschaft 38:235–253CrossRefGoogle Scholar
- Jägemann C, Fürsch M, Hagspiel S, Nagl S (2013) Decarbonizing Europe’s power sector by 2050—analyzing the economic implications of alternative decarbonization pathways. Energy Econ 40:622–636CrossRefGoogle Scholar
- Jenkins JD (2014) Political economy constraints on carbon pricing policies: what are the implications for economic efficiency, environmental efficacy, and climate policy design? Energy Policy 69:467–477CrossRefGoogle Scholar
- Johnstone N, Hasic I, Popp D (2010) Renewable energy policies and technological innovation: evidence based on patent counts. Environ Resour Econ 45:133–155CrossRefGoogle Scholar
- Kaffine DT, McBee BJ, Lieskovsky J (2013) Emissions savings from wind power generation in Texas. Energy J 34:155–175CrossRefGoogle Scholar
- Kalkuhl M, Edenhofer O, Lessmann K (2012) Learning or lock-in: optimal technology policies to support mitigation. Resour Energy Econ 34:1–23CrossRefGoogle Scholar
- Kalkuhl M, Edenhofer O, Lessmann K (2013) Renewable energy subsidies: second-best policy or fatal aberration for mitigation? Resour Energy Econ 35:217–234CrossRefGoogle Scholar
- Kitzing L (2014) Risk implications of renewable support instruments: comparative analysis of feed-in tariffs and premiums using a meanevariance approach. Energy 64:495–505CrossRefGoogle Scholar
- Kitzing L, Mitchell C, Morthorst PE (2012) Renewable energy policies in Europe: converging or diverging? Energy Policy 51:192–201CrossRefGoogle Scholar
- Klessmann C, Rathmann M, de Jager D, Gazzo A, Resch G, Busch S, Ragwitz M (2013) Policy options for reducing the costs of reaching the European renewables target. Renew Energy 57:390–403CrossRefGoogle Scholar
- Kverndokk S, Rosendahl KE (2007) Climate policies and learning by doing: impacts and timing of technology subsidies. Resour Energy Econ 29:58–82CrossRefGoogle Scholar
- Kverndokk S, Rosendahl KE, Rutherford TF (2004) Climate policies and induced technological change: which to choose, the carrot or the stick? Environ Resour Econ 27:21–41CrossRefGoogle Scholar
- Lehmann P (2012) Justifying a policy mix for pollution control: a review of economic literature. J Econ Surv 26:71–97CrossRefGoogle Scholar
- Lehmann P (2013) Supplementing an emissions tax by a feed-in tariff for renewable electricity to address learning spillovers. Energy Policy 61:635–641CrossRefGoogle Scholar
- Lehmann P, Gawel E (2013) Why should support schemes for renewable electricity complement the EU emissions trading scheme? Energy Policy 52:597–607CrossRefGoogle Scholar
- Lehmann P, Creutzig F, Ehlers M-H, Friedrichsen N, Heuson C, Hirth L, Pietzcker R (2012) Carbon lock-out: advancing renewable energy policy in Europe. Energies 5:323–354CrossRefGoogle Scholar
- Lerner J (2009) Boulevard of broken dreams. Princeton University Press, PrincetonCrossRefGoogle Scholar
- Lester RK, McCabe MJ (1993) The effect of industrial structure on learning by doing in nuclear power plant operation. RAND J Econ 115:418–438CrossRefGoogle Scholar
- Lindman A, Söderholm P (2012) Wind power learning rates: a conceptual review and meta-analysis. Energy Econ 34:754–761CrossRefGoogle Scholar
- Löschel A, Flues F, Pothen F, Massier P (2013) Der deutsche Strommarkt im Umbruch: Zur Notwendigkeit einer Marktordnung aus einem Guss. Wirtschaftsdienst 93:778–784CrossRefGoogle Scholar
- McDonald A, Schrattenholzer L (2001) Learning rates for energy technologies. Energy Policy 29:255–261CrossRefGoogle Scholar
- Meckling J, Kelsey N, Biber E, Zysman J (2015) Winning coalitions for climate policy—green industrial policy builds support for carbon regulation. Science 349:1170–1171CrossRefGoogle Scholar
- Meyerhoff J, Ohl C, Hartje V (2010) Landscape externalities from onshore wind power. Energy Policy 38:82–92CrossRefGoogle Scholar
- Miyake S, Renouf M, Peterson A, McAlpine C, Smith C (2012) Land-use and environmental pressures resulting from current and future bioenergy crop expansion: a review. J Rural Stud 28:650–658CrossRefGoogle Scholar
- Monopolkommission (2011) Sondergutachten 59: Energie 2011: Wettbewerbsentwicklung mit Licht und Schatten: Sondergutachten der Monopolkommission gemäß §62 Abs 1 EnWG. Monopolkommission, BerlinGoogle Scholar
- Monopolkommission (2013) Energie 2013: Wettbewerb in Zeiten der Energiewende. Sondergutachten 65. Monopolkommission, BerlinGoogle Scholar
- Nemet GF (2006) Beyond the learning curve: factors influencing cost reductions in photovoltaics. Energy Policy 34:3218–3232CrossRefGoogle Scholar
- Neuhoff K (2005) Large-scale deployment of renewables for electricity generation. Oxf Rev Econ Policy 21:88–110CrossRefGoogle Scholar
- Neuhoff K, De Vries L (2004) Insufficient incentives for investment in electricity generation. Util Policy 12:253–268CrossRefGoogle Scholar
- Noailly J, Shestalova V (2013) Knowledge spillovers from renewable energy technologies: Lessons from patent citations. CPB Discussion Paper 262, CPB Netherlands Bureau for Economic Policy Analysis, The HagueGoogle Scholar
- Noll D, Dawes C, Rai V (2014) Solar community organizations and active peer effects in the adoption of residential PV. Energy Policy 67:330–343CrossRefGoogle Scholar
- Nordensvärd J, Urban F (2015) The stuttering energy transition in Germany: wind energy policy and feed-in tarif flock-in. Energy Policy 82:156–165CrossRefGoogle Scholar
- Nordhaus WD (2011) Designing a friendly space for technological change to slow global warming. Energy Econ 33:665–673CrossRefGoogle Scholar
- Nordhaus WD (2014) The perils of the learning model for modeling endogenous technological change. Energy J 35:1–13CrossRefGoogle Scholar
- North DC (1990) Institutions, institutional change and economic performance. Cambridge University Press, CambridgeCrossRefGoogle Scholar
- Novan K (2015) Valuing the wind: renewable energy policies and air pollution avoided. Am Econ J 7:291–326Google Scholar
- Ofgem (2015) Renewables obligation: guidance for generators. Ofgem, LondonGoogle Scholar
- Parry IWH, Williams RCI (2010) What are the costs of meeting distributional objectives in designing climate policy? RFF Discussion Paper 10-51, Resources for the Future (RFF), Washington, D.CGoogle Scholar
- Peters M, Schneider M, Griesshaber T, Hoffman V (2012) The impact of technology-push and demand-pull policies on technical change—does the locus of policies matter? Res Policy 41:1296–1308CrossRefGoogle Scholar
- Popp D (2002) Induced innovation and energy prices. Am Econ Rev 92:160–180CrossRefGoogle Scholar
- Popp D, Santen N, Fisher-Vanden K, Webster M (2013) Technology variation vs. R&D uncertainty: what matters most for energy patent success? Resour Energy Econ 35:505–533CrossRefGoogle Scholar
- Prado M, Trebilcock M (2009) Path dependence, development, and the dynamics of institutional reform. Univ Toronto Law J 59:341–379CrossRefGoogle Scholar
- Purkus A, Röder M, Gawel E, Thrän D, Thornley P (2015) Handling uncertainty in bioenergy policy design—a case study analysis of UK and German bioelectricity policy instruments. Biomass Bioenergy 79:64–79CrossRefGoogle Scholar
- Rathmann M, de Jager D, de Lovinfosse I, Breitschopf B, Burgers J, Weöres B (2011) Towards triple-a policies: more renewable energy at lower cost. Ecofys, UtrechtGoogle Scholar
- Resch G, Liebmann L, Ortner A, Busch S, Panzer C, Del Rio P, Ragwitz M, Steinhilber S, Klobasa M, Winkler J, Gephart M, Klessmann C, de Lovinfosse I, Papaefthymiou G, Nysten JV, Fouquet D, Johnston A, van der Marel E, Bañez F, Batlle C, Fernandes C, Frías P, Linares P, Olmos L, Rivier M, Knapek J, Kralik T, Faber T, Steinbaecker S, Borasoy B, Toro F, Plascencia L (2014) Design and impact of a harmonised policy for renewable electricity in Europe—Final report of the beyond 2020 project - approaches for a harmonisation of RES(-E) support in Europe. Energy Economics Group (EEG) et al., ViennaGoogle Scholar
- Rodrik D (2014) Green industrial policy. Oxf Rev Econ Policy 30:469–491CrossRefGoogle Scholar
- Rohracher H (2008) Energy systems in transition: contributions from social sciences. Int J Technol Manag 9:144–161Google Scholar
- Rubin ES, Azevedo IML, Jaramillo P, Yeh S (2015) A review of learning rates for electricity supply technologies. Energy Policy 86:198–218CrossRefGoogle Scholar
- Rudolph S (2009) How the German patient followed the Doctor’s orders: political economy lessons from implementing market-based instruments in Germany. In: Lye L-H, Milne JE, Ashiabor H, Kreiser L, Deketelaere K (eds) Critical Issues in Environmental Taxation - International and Comparative Perspectives, vol VII. Oxford University Press, OxfordGoogle Scholar
- Sathaye J, Lucon O, Rahman A, Christensen J, Denton F, Fujino J, Heath G, Kadner S, Mirza M, Rudnick H, Schlaepfer A, Shmakin A (2011) Renewable energy in the context of sustainable development. In: Edenhofer, O, Pichs-Madruga, R, Sokona, Y, Seyboth, K, Matschoss, P, Kadner, S, Zwickel, T, Eickemeier, P, Hansen, G, Schlömer, S, von Stechow, C (eds) IPCC special report on renewable energy sources and climate change mitigation. Cambridge University Press, Cambridge, UK, and New YorkGoogle Scholar
- Sijm J (2005) The interaction between the EU emission trading scheme and national energy policy schemes. Clim Policy 5:79–96CrossRefGoogle Scholar
- Söderholm P (2001) Fuel for thought: European energy market restructuring and the future of power generation gas use. Int J Glob Energy Issues 16:313–327CrossRefGoogle Scholar
- Söderholm P, Klaassen G (2007) Wind power in Europe: a simultaneous innovation diffusion model. Environ Resour Econ 36:163–190CrossRefGoogle Scholar
- Söderholm P, Sundqvist T (2006) Measuring environmental externalities in the electric power sector. In: Pearce DW (ed) Environmental valuation in developed countries. Edward Elgar, CheltenhamGoogle Scholar
- Söderholm P, Sundqvist T (2007) The empirical challenges in the use of learning curves for assessing the economic prospects of renewable energy technologies. Renew Energy 32:2559–2578CrossRefGoogle Scholar
- Spash CL (2010) The brave new world of carbon trading. New Polit Econ 15:169–195CrossRefGoogle Scholar
- Stein JC (1989) Efficient capital markets, inefficient firms: a model of myopic corporate behavior. Q J Econ 104:655–669CrossRefGoogle Scholar
- Story V, O’Malley L, Hart S (2011) Roles, role performance, and radical innovation competences. Ind Mark Manag 40:952–966CrossRefGoogle Scholar
- Strunz S, Gawel E, Lehmann P (2016) The political economy of renewable energy policies in germany and the EU. Util Policy 42:33–41CrossRefGoogle Scholar
- Sühlsen K, Hisschemöller M (2014) Lobbying the ‘Energiewende’. Assessing the effectiveness of strategies to promote the renewable energy business in Germany. Energy Policy 69:316–325CrossRefGoogle Scholar
- Sundqvist T, Söderholm P (2002) Valuing the environmental impacts of electricity generation: a critical survey. J Energy Lit 8:3–41Google Scholar
- SVR (2014) Gegen eine rückwärtsgewandte Wirtschaftspolitik. Jahresgutachten 2013/14. Sachverständigenrat zur Begutachtung der gesamtwirtschaftlichen Entwicklung (SVR), WiesbadenGoogle Scholar
- Tafarte P, Das S, Eichhorn M, Thrän D (2014) Small adaptations, big impacts: options for an optimized mix of variable renewable energy sources. Energy 72:80–92CrossRefGoogle Scholar
- Thue L (1995) Electricity rules–the formation and development of the nordic electricity regimes. In: Kaijser A, Hedin M (eds) Nordic energy systems: historical perspectives and current issues. Watson Publishing International, CantonGoogle Scholar
- Torvanger A, Meadowcroft J (2011) The political economy of technology support: making decisions about CCS and low carbon energy technologies. Glob Environ Change 21:303–312CrossRefGoogle Scholar
- Trajtenberg M (1990) A penny for your quotes: patent citations and the value of innovations. RAND J Econ 21:172–187CrossRefGoogle Scholar
- Unruh GC (2000) Understanding carbon lock-in. Energy Policy 28:817–830CrossRefGoogle Scholar
- van Benthem A, Gillingham K, Sweeney JL (2008) Learning-by-doing and the optimal solar policy in California. Energy J 29:131–152Google Scholar
- Vossler C (2014) Entwicklung und Reformmöglichkeiten des EEG aus Sicht der neuen politischen Ökonomie. Zeitschrift für Umweltpolitik und -recht 37:198–223Google Scholar
- Yeh S, Rubin ES (2012) A review of uncertainties in technology experience curves. Energy Econ 34:762–771CrossRefGoogle Scholar
- Zimmerman MB (1982) Learning effects and the commercialization of new energy technologies: the case of nuclear power. Bell J Econ 13:297–310CrossRefGoogle Scholar