Environmental and Resource Economics

, Volume 71, Issue 2, pp 475–505 | Cite as

Can Technology-Specific Deployment Policies Be Cost-Effective? The Case of Renewable Energy Support Schemes

  • Paul LehmannEmail author
  • Patrik Söderholm


While there is relatively limited disagreement on the general need for supporting the deployment of renewable energy sources for electricity generation (RES-E), there are diverging views on whether the granted support levels should be technology-neutral or technology-specific. In this review paper we question the frequently stressed argument that technology-neutral schemes will promote RES-E deployment cost-effectively. We use a simple partial equilibrium model of the electricity sector with one representative investor as a vehicle to synthesize the existing literature, and review potential rationales for technology-specific RES-E support. The analysis addresses market failures associated with technological development, long-term risk taking, path dependencies as well as various external costs, all of which drive a wedge between the private and the social costs of RES-E deployment. Based on analytical insight and a review of empirical literature, we conclude that the relevance of these market failures is typically heterogeneous across different RES-E technologies. The paper also discusses a number of possible caveats to implementing cost-effective technology-specific support schemes in practice, including the role of various informational and politico-economic constraints. While these considerations involve important challenges, neither of them suggests an unambiguous plea for technology-neutral RES-E support policies either. We close by highlighting principles for careful RES-E policy design, and by outlining four important avenues for future research.


Technology development Renewable energy sources Support schemes Cost-effectiveness 

JEL Classification

H23 O33 Q42 



Research for this article has been funded by the German Helmholtz Association under Grant HA-303 as well as the Swedish Research Council Formas. We are particularly grateful to Editor David Popp and two anonymous referees for their numerous constructive comments, which have helped to improve the article significantly. Moreover, the article has benefited from discussions with Erik Gawel and Alexandra Purkus. All remaining errors reside solely with the authors.


  1. Aalbers R, Shestalova V, Kocis V (2013) Innovation policy for directing technical change in the power sector. Energy Policy 63:1240–1250CrossRefGoogle Scholar
  2. Abbasi SA, Abbasi N (2000) The likely adverse environmental impacts of renewable energy sources. Appl Energy 65:121–144CrossRefGoogle Scholar
  3. Acemoglu D, Aghion P, Bursztyn L, Hemous D (2012) The Environment and Directed Technical Change. Am Econ Rev 102:131–166CrossRefGoogle Scholar
  4. Aghion P, David PA, Foray D (2009) Science, technology and innovation for economic growth: linking policy research and practice in ‘STIG Systems’. Res Policy 38:681–693CrossRefGoogle Scholar
  5. Aghion P, Dechezlepretre A, Hemous D, Martin R, van Reenen J (2012) Carbon taxes, path dependency and directed technical change : evidence from the auto industry. NBER Working Paper, National Bureau of Economic Research (NBER), Cambridge, MAGoogle Scholar
  6. Anger N, Böhringer C, Oberndorfer U (2008) Public interest vs. interest groups: allowance allocation in the EU emissions trading scheme. Discussion Paper No. 08-023, Zentrum fuer Europaeische Wirtschaftsforschung (ZEW), MannheimGoogle Scholar
  7. Argote L, Epple D (1990) Learning curves in manufacturing. Science 247:920–924CrossRefGoogle Scholar
  8. Arrow KJ, Lind RC (1970) Uncertainty and the evaluation of public investment decisions. Am Econ Rev 60:364–378Google Scholar
  9. Arthur WB (1989) Competing technologies, increasing returns, and lock-in by historical small events. Econ J 99:116–131CrossRefGoogle Scholar
  10. Azar C, Sandén BA (2011) The elusive quest for technology-neutral policies. Environ Innov Soc Transit 1:135–139CrossRefGoogle Scholar
  11. Bäckström K, Lundmark R, Söderholm P (2014) Public policies and solar PV innovation: an empirical study based on patent data. In: 37th International IAEE conference, 15-18 June, New York, USAGoogle Scholar
  12. Bennear LS, Stavins RN (2007) Second-best theory and the use of multiple policy instruments. Environ Resour Econ 37:111–129CrossRefGoogle Scholar
  13. Bergek A, Jacobsson S (2010) Are tradable green certificates a cost-efficient policy driving technical change or a rent-generating machine? Lessons from Sweden 2003–2008. Energy Policy 38:1255–1271CrossRefGoogle Scholar
  14. Bergmann A, Colombo S, Hanley N (2008) Rural versus urban preferences for renewable energy developments. Ecol Econ 65:616–625CrossRefGoogle Scholar
  15. Bläsi A, Requate T (2010) Feed-in-tariffs for electricity from renewable energy resources to move down the learning curve? Public Financ Manag 10:213–250Google Scholar
  16. BMWi (2015) EEG in Zahlen: Vergütungen, Differenzkosten und EEG-Umlage 2000 bis 2016. Bundesministerium für Wirtschaft und Energie (BMWi), BerlinGoogle Scholar
  17. BMWi (2016) Revision of the renewable energy sources act-key points (revised) of the proposal by the Federal Ministry for Economic Affairs and Energy. Bundesministerium für Wirtschaft und Energie (BMWi), BerlinGoogle Scholar
  18. Bollinger B, Gillingham K (2012) Peer effects in the diffusion of solar photovoltaic panels. Mark Sci 31:900–912CrossRefGoogle Scholar
  19. Bollinger B, Gillingham K (2014) Learning-by-doing in solar photovoltaic installations. Yale University, New Haven, CT, Discussion PaperGoogle Scholar
  20. Braun FG, Schmidt-Ehmcke J, Zloczysti P (2010) Innovative activity in wind and solar technology: empirical evidence on knowledge spillovers using patent data. Discussion Paper 993, Deutsches Institut für Wirtschaftsforschung (DIW), BerlinGoogle Scholar
  21. Budish E, Roin BN, Williams H (2015) Do firms underinvest in long-term research? Evidence from cancer clinical trials. Am Econ J 105:2044–2085Google Scholar
  22. Dechezleprêtre A, Martin R, Mohnen M (2013) Knowledge spillovers from clean and dirty technologies: a patent citation analysis. Discussion Paper, London School of Economics (LSE), LondonGoogle Scholar
  23. del Rio P, Cerdá E (2014) The policy implications of the different interpretations of the cost-effectiveness of renewable electricity support. Energy Policy 64:364–372CrossRefGoogle Scholar
  24. del Rio P, Linares P (2014) Back to the future? Rethinking auctions for renewable electricity support. Renew Sustain Energy Rev 35:42–56CrossRefGoogle Scholar
  25. Dobers GM, Oehlmann M, Liebe U, Meyerhoff J (2015) Einstellungen und Präferenzen zum Ausbau Erneuerbarer Energien. Ökologisches Wirtschaften 30:16–17CrossRefGoogle Scholar
  26. Drechsler M, Ohl C, Meyerhoff J, Eichhorn M, Monsees J (2011) Combining spatial modeling and choice experiments for the optimal spatial allocation of wind turbines. Energy Policy 39:3845–3854CrossRefGoogle Scholar
  27. European Commission (2013a) Delivering the internal electricity market and making the most of public intervention. COM, (2013) 7243 final. European Commission, BrusselsGoogle Scholar
  28. European Commission (2013b) European Commission guidance for the design of renewables support schemes. SWD, (2013) 439 final. European Commission, BrusselsGoogle Scholar
  29. European Commission (2013c) Report from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: Renewable Energy Progress Report. COM(2013) 175, European Commission, BrusselsGoogle Scholar
  30. Fischer C, Newell RG (2008) Environmental and technology policies for climate change mitigation. J Environ Econ Manag 55:142–162CrossRefGoogle Scholar
  31. Fischer C, Preonas L (2010) Combining policies for renewable energy: is the whole less than the sum of its parts? Int Rev Environ Resour Econ 4:51–92CrossRefGoogle Scholar
  32. Fischer C, Torvanger A, Shrivastava MK, Sterner T, Stigson P (2012) How should support for climate-friendly technologies be designed? Ambio 41:33–45CrossRefGoogle Scholar
  33. Foxon T, Pearson P (2008) Overcoming barriers to innovation and diffusion of cleaner technologies: some features of a sustainable innovation policy regime. J Clean Prod 16:S148–S161CrossRefGoogle Scholar
  34. Frontier Economics (2012) Die Zukunft des EEG - Handlungsoptionen und Reformansätze. Bericht für die EnBW AG. Frontier Economics Ltd., LondonGoogle Scholar
  35. Frontier Economics (2014) Technologieoffene Ausschreibungen für Erneuerbare Energien. Ein Bericht für EFET Deutschland. Frontier Economics Ltd., LondonGoogle Scholar
  36. Frontier Economics, r2b (2013) Effizientes Regime für den Ausbau der EE, Weiterentwicklung des Energy-Only-Marktes und Erhaltung des EU-ETS. Ein Bericht für die RWE AG. Frontier Economics Ltd., LondonGoogle Scholar
  37. Fürsch M, Golling C, Nicolosi M, Wissen R, Lindenberger D (2010) European RES-E Policy Analysis - A model based analysis of RES-E deployment and its impact on the conventional power market. Energiewirtschaftliches Institut an der Universität Köln, KölnGoogle Scholar
  38. Galinato GI, Yoder JK (2010) An integrated taxsubsidy policy for carbon emission reduction. Resour Energy Econ 32:310–326CrossRefGoogle Scholar
  39. Gawel E, Strunz S, Lehmann P (2014) A public choice view on the climate and energy policy mix in the EU—how do the emissions trading scheme and support for renewable energies interact? Energy Policy 64:175–182CrossRefGoogle Scholar
  40. Gawel E, Lehmann P, Purkus A, Söderholm P, Witte K (2017) Rationales for technology-specific RES support and their relevance for German policy. Energy Policy 102:16–26CrossRefGoogle Scholar
  41. Geels FW (2004) From sectoral systems of innovation to socio-technical systems. Insights about dynamics and change from sociology and institutional theory. Res Policy 33:897–920CrossRefGoogle Scholar
  42. Graziano M, Gillingham K (2015) Spatial patterns of solar photovoltaic system adoption: the influence of neighbors and the built environment. J Econ Geogr 15:815–839CrossRefGoogle Scholar
  43. Grubb M (1997) Technologies, energy systems and the timing of CO2 emissions abatement: an overview of economic issues. Energy Policy 25:159–172CrossRefGoogle Scholar
  44. Grubler A, Aguayo F, Gallagher K, Hekkert M, Jiang K, Mytelka L, Neij L, Nemet GF, Wilson C (2012) Chapter 24—Policies for the energy technology innovation system (ETIS). In: Global energy assessment—toward a sustainable future. Cambridge University Press/International Institute for Applied Systems Analysis, Cambridge/LaxenburgGoogle Scholar
  45. Hall BH, Jaffe AB, Trajtenberg M (2005) Market value and patent citations. RAND J Econ 36:16–38Google Scholar
  46. Held A, Ragwitz M, Gephart M, De Visser E, Klessmann C (2014) Design features of support schemes for renewable electricity, Task 2 report. Ecofys, BrusselsGoogle Scholar
  47. Helm D (2010) Government failure, rent-seeking, and capture: the design of climate change policy. Oxf Rev Econ Policy 26:182–196CrossRefGoogle Scholar
  48. Hirth L (2013) The market value of variable renewables. Energy Econ 38:218–236CrossRefGoogle Scholar
  49. Hirth L, Mueller S (2015) System-friendly wind and solar power. IEA Insight Paper, International Energy Agency (IEA), ParisGoogle Scholar
  50. Hirth L, Ueckerdt F, Edenhofer O (2015) Integration costs revisited—an economic framework of wind and solar variability. Renew Energy 74:925–939CrossRefGoogle Scholar
  51. Hitaj C, Schymura M, Löschel A (2014) The Impact of a Feed-In Tariff on Wind Power Development in Germany. Discussion Paper, Zentrum fuer Europaeische Wirtschaftsforschung (ZEW), MannheimGoogle Scholar
  52. Hoppmann J, Huenteler J, Girod B (2014) Compulsive policy-making–the evolution of the German feed-in tariff system for solar photovoltaic power. Res Policy 43:1422–1441CrossRefGoogle Scholar
  53. IEA (2000) Experience Curves for Technology Policy. International Energy Agency (IEA), ParisGoogle Scholar
  54. Irwin DA, Klenow PJ (1994) Learning-by-doing spillovers in the semiconductor industry. J Polit Econ 102:1200–1227CrossRefGoogle Scholar
  55. Jacobsson S, Bergek A (2011) Innovation system analyses and sustainability transitions: contributions and suggestions for research. Environ Innov Soc Transit 1:41–57CrossRefGoogle Scholar
  56. Jacobsson S, Bergek A, Finon D, Lauber V, Mitchell C, Toke D, Verbruggen H (2009) EU renewable energy support policy: faith or facts? Energy Policy 37:2143–2146CrossRefGoogle Scholar
  57. Jaffe AB, Trajtenberg M (1999) International knowledge flows: evidence from patent citations. Econ Innov New Technol 8:105–136CrossRefGoogle Scholar
  58. Jägemann C (2014) A note on the inefficiency of technology- and region-specific renewable energy support: the German case. Zeitschrift für Energiewirtschaft 38:235–253CrossRefGoogle Scholar
  59. Jägemann C, Fürsch M, Hagspiel S, Nagl S (2013) Decarbonizing Europe’s power sector by 2050—analyzing the economic implications of alternative decarbonization pathways. Energy Econ 40:622–636CrossRefGoogle Scholar
  60. Jenkins JD (2014) Political economy constraints on carbon pricing policies: what are the implications for economic efficiency, environmental efficacy, and climate policy design? Energy Policy 69:467–477CrossRefGoogle Scholar
  61. Johnstone N, Hasic I, Popp D (2010) Renewable energy policies and technological innovation: evidence based on patent counts. Environ Resour Econ 45:133–155CrossRefGoogle Scholar
  62. Kaffine DT, McBee BJ, Lieskovsky J (2013) Emissions savings from wind power generation in Texas. Energy J 34:155–175CrossRefGoogle Scholar
  63. Kalkuhl M, Edenhofer O, Lessmann K (2012) Learning or lock-in: optimal technology policies to support mitigation. Resour Energy Econ 34:1–23CrossRefGoogle Scholar
  64. Kalkuhl M, Edenhofer O, Lessmann K (2013) Renewable energy subsidies: second-best policy or fatal aberration for mitigation? Resour Energy Econ 35:217–234CrossRefGoogle Scholar
  65. Kitzing L (2014) Risk implications of renewable support instruments: comparative analysis of feed-in tariffs and premiums using a meanevariance approach. Energy 64:495–505CrossRefGoogle Scholar
  66. Kitzing L, Mitchell C, Morthorst PE (2012) Renewable energy policies in Europe: converging or diverging? Energy Policy 51:192–201CrossRefGoogle Scholar
  67. Klessmann C, Rathmann M, de Jager D, Gazzo A, Resch G, Busch S, Ragwitz M (2013) Policy options for reducing the costs of reaching the European renewables target. Renew Energy 57:390–403CrossRefGoogle Scholar
  68. Kverndokk S, Rosendahl KE (2007) Climate policies and learning by doing: impacts and timing of technology subsidies. Resour Energy Econ 29:58–82CrossRefGoogle Scholar
  69. Kverndokk S, Rosendahl KE, Rutherford TF (2004) Climate policies and induced technological change: which to choose, the carrot or the stick? Environ Resour Econ 27:21–41CrossRefGoogle Scholar
  70. Lehmann P (2012) Justifying a policy mix for pollution control: a review of economic literature. J Econ Surv 26:71–97CrossRefGoogle Scholar
  71. Lehmann P (2013) Supplementing an emissions tax by a feed-in tariff for renewable electricity to address learning spillovers. Energy Policy 61:635–641CrossRefGoogle Scholar
  72. Lehmann P, Gawel E (2013) Why should support schemes for renewable electricity complement the EU emissions trading scheme? Energy Policy 52:597–607CrossRefGoogle Scholar
  73. Lehmann P, Creutzig F, Ehlers M-H, Friedrichsen N, Heuson C, Hirth L, Pietzcker R (2012) Carbon lock-out: advancing renewable energy policy in Europe. Energies 5:323–354CrossRefGoogle Scholar
  74. Lerner J (2009) Boulevard of broken dreams. Princeton University Press, PrincetonGoogle Scholar
  75. Lester RK, McCabe MJ (1993) The effect of industrial structure on learning by doing in nuclear power plant operation. RAND J Econ 115:418–438CrossRefGoogle Scholar
  76. Lindman A, Söderholm P (2012) Wind power learning rates: a conceptual review and meta-analysis. Energy Econ 34:754–761CrossRefGoogle Scholar
  77. Löschel A, Flues F, Pothen F, Massier P (2013) Der deutsche Strommarkt im Umbruch: Zur Notwendigkeit einer Marktordnung aus einem Guss. Wirtschaftsdienst 93:778–784CrossRefGoogle Scholar
  78. McDonald A, Schrattenholzer L (2001) Learning rates for energy technologies. Energy Policy 29:255–261CrossRefGoogle Scholar
  79. Meckling J, Kelsey N, Biber E, Zysman J (2015) Winning coalitions for climate policy—green industrial policy builds support for carbon regulation. Science 349:1170–1171CrossRefGoogle Scholar
  80. Meyerhoff J, Ohl C, Hartje V (2010) Landscape externalities from onshore wind power. Energy Policy 38:82–92CrossRefGoogle Scholar
  81. Miyake S, Renouf M, Peterson A, McAlpine C, Smith C (2012) Land-use and environmental pressures resulting from current and future bioenergy crop expansion: a review. J Rural Stud 28:650–658CrossRefGoogle Scholar
  82. Monopolkommission (2011) Sondergutachten 59: Energie 2011: Wettbewerbsentwicklung mit Licht und Schatten: Sondergutachten der Monopolkommission gemäß §62 Abs 1 EnWG. Monopolkommission, BerlinGoogle Scholar
  83. Monopolkommission (2013) Energie 2013: Wettbewerb in Zeiten der Energiewende. Sondergutachten 65. Monopolkommission, BerlinGoogle Scholar
  84. Nemet GF (2006) Beyond the learning curve: factors influencing cost reductions in photovoltaics. Energy Policy 34:3218–3232CrossRefGoogle Scholar
  85. Neuhoff K (2005) Large-scale deployment of renewables for electricity generation. Oxf Rev Econ Policy 21:88–110CrossRefGoogle Scholar
  86. Neuhoff K, De Vries L (2004) Insufficient incentives for investment in electricity generation. Util Policy 12:253–268CrossRefGoogle Scholar
  87. Noailly J, Shestalova V (2013) Knowledge spillovers from renewable energy technologies: Lessons from patent citations. CPB Discussion Paper 262, CPB Netherlands Bureau for Economic Policy Analysis, The HagueGoogle Scholar
  88. Noll D, Dawes C, Rai V (2014) Solar community organizations and active peer effects in the adoption of residential PV. Energy Policy 67:330–343CrossRefGoogle Scholar
  89. Nordensvärd J, Urban F (2015) The stuttering energy transition in Germany: wind energy policy and feed-in tarif flock-in. Energy Policy 82:156–165CrossRefGoogle Scholar
  90. Nordhaus WD (2011) Designing a friendly space for technological change to slow global warming. Energy Econ 33:665–673CrossRefGoogle Scholar
  91. Nordhaus WD (2014) The perils of the learning model for modeling endogenous technological change. Energy J 35:1–13CrossRefGoogle Scholar
  92. North DC (1990) Institutions, institutional change and economic performance. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  93. Novan K (2015) Valuing the wind: renewable energy policies and air pollution avoided. Am Econ J 7:291–326Google Scholar
  94. Ofgem (2015) Renewables obligation: guidance for generators. Ofgem, LondonGoogle Scholar
  95. Parry IWH, Williams RCI (2010) What are the costs of meeting distributional objectives in designing climate policy? RFF Discussion Paper 10-51, Resources for the Future (RFF), Washington, D.CGoogle Scholar
  96. Peters M, Schneider M, Griesshaber T, Hoffman V (2012) The impact of technology-push and demand-pull policies on technical change—does the locus of policies matter? Res Policy 41:1296–1308CrossRefGoogle Scholar
  97. Popp D (2002) Induced innovation and energy prices. Am Econ Rev 92:160–180CrossRefGoogle Scholar
  98. Popp D, Santen N, Fisher-Vanden K, Webster M (2013) Technology variation vs. R&D uncertainty: what matters most for energy patent success? Resour Energy Econ 35:505–533CrossRefGoogle Scholar
  99. Prado M, Trebilcock M (2009) Path dependence, development, and the dynamics of institutional reform. Univ Toronto Law J 59:341–379CrossRefGoogle Scholar
  100. Purkus A, Röder M, Gawel E, Thrän D, Thornley P (2015) Handling uncertainty in bioenergy policy design—a case study analysis of UK and German bioelectricity policy instruments. Biomass Bioenergy 79:64–79CrossRefGoogle Scholar
  101. Rathmann M, de Jager D, de Lovinfosse I, Breitschopf B, Burgers J, Weöres B (2011) Towards triple-a policies: more renewable energy at lower cost. Ecofys, UtrechtGoogle Scholar
  102. Resch G, Liebmann L, Ortner A, Busch S, Panzer C, Del Rio P, Ragwitz M, Steinhilber S, Klobasa M, Winkler J, Gephart M, Klessmann C, de Lovinfosse I, Papaefthymiou G, Nysten JV, Fouquet D, Johnston A, van der Marel E, Bañez F, Batlle C, Fernandes C, Frías P, Linares P, Olmos L, Rivier M, Knapek J, Kralik T, Faber T, Steinbaecker S, Borasoy B, Toro F, Plascencia L (2014) Design and impact of a harmonised policy for renewable electricity in Europe—Final report of the beyond 2020 project - approaches for a harmonisation of RES(-E) support in Europe. Energy Economics Group (EEG) et al., ViennaGoogle Scholar
  103. Rodrik D (2014) Green industrial policy. Oxf Rev Econ Policy 30:469–491CrossRefGoogle Scholar
  104. Rohracher H (2008) Energy systems in transition: contributions from social sciences. Int J Technol Manag 9:144–161Google Scholar
  105. Rubin ES, Azevedo IML, Jaramillo P, Yeh S (2015) A review of learning rates for electricity supply technologies. Energy Policy 86:198–218CrossRefGoogle Scholar
  106. Rudolph S (2009) How the German patient followed the Doctor’s orders: political economy lessons from implementing market-based instruments in Germany. In: Lye L-H, Milne JE, Ashiabor H, Kreiser L, Deketelaere K (eds) Critical Issues in Environmental Taxation - International and Comparative Perspectives, vol VII. Oxford University Press, OxfordGoogle Scholar
  107. Sathaye J, Lucon O, Rahman A, Christensen J, Denton F, Fujino J, Heath G, Kadner S, Mirza M, Rudnick H, Schlaepfer A, Shmakin A (2011) Renewable energy in the context of sustainable development. In: Edenhofer, O, Pichs-Madruga, R, Sokona, Y, Seyboth, K, Matschoss, P, Kadner, S, Zwickel, T, Eickemeier, P, Hansen, G, Schlömer, S, von Stechow, C (eds) IPCC special report on renewable energy sources and climate change mitigation. Cambridge University Press, Cambridge, UK, and New YorkGoogle Scholar
  108. Sijm J (2005) The interaction between the EU emission trading scheme and national energy policy schemes. Clim Policy 5:79–96CrossRefGoogle Scholar
  109. Söderholm P (2001) Fuel for thought: European energy market restructuring and the future of power generation gas use. Int J Glob Energy Issues 16:313–327CrossRefGoogle Scholar
  110. Söderholm P, Klaassen G (2007) Wind power in Europe: a simultaneous innovation diffusion model. Environ Resour Econ 36:163–190CrossRefGoogle Scholar
  111. Söderholm P, Sundqvist T (2006) Measuring environmental externalities in the electric power sector. In: Pearce DW (ed) Environmental valuation in developed countries. Edward Elgar, CheltenhamGoogle Scholar
  112. Söderholm P, Sundqvist T (2007) The empirical challenges in the use of learning curves for assessing the economic prospects of renewable energy technologies. Renew Energy 32:2559–2578CrossRefGoogle Scholar
  113. Spash CL (2010) The brave new world of carbon trading. New Polit Econ 15:169–195CrossRefGoogle Scholar
  114. Stein JC (1989) Efficient capital markets, inefficient firms: a model of myopic corporate behavior. Q J Econ 104:655–669CrossRefGoogle Scholar
  115. Story V, O’Malley L, Hart S (2011) Roles, role performance, and radical innovation competences. Ind Mark Manag 40:952–966CrossRefGoogle Scholar
  116. Strunz S, Gawel E, Lehmann P (2016) The political economy of renewable energy policies in germany and the EU. Util Policy 42:33–41CrossRefGoogle Scholar
  117. Sühlsen K, Hisschemöller M (2014) Lobbying the ‘Energiewende’. Assessing the effectiveness of strategies to promote the renewable energy business in Germany. Energy Policy 69:316–325CrossRefGoogle Scholar
  118. Sundqvist T, Söderholm P (2002) Valuing the environmental impacts of electricity generation: a critical survey. J Energy Lit 8:3–41Google Scholar
  119. SVR (2014) Gegen eine rückwärtsgewandte Wirtschaftspolitik. Jahresgutachten 2013/14. Sachverständigenrat zur Begutachtung der gesamtwirtschaftlichen Entwicklung (SVR), WiesbadenGoogle Scholar
  120. Tafarte P, Das S, Eichhorn M, Thrän D (2014) Small adaptations, big impacts: options for an optimized mix of variable renewable energy sources. Energy 72:80–92CrossRefGoogle Scholar
  121. Thue L (1995) Electricity rules–the formation and development of the nordic electricity regimes. In: Kaijser A, Hedin M (eds) Nordic energy systems: historical perspectives and current issues. Watson Publishing International, CantonGoogle Scholar
  122. Torvanger A, Meadowcroft J (2011) The political economy of technology support: making decisions about CCS and low carbon energy technologies. Glob Environ Change 21:303–312CrossRefGoogle Scholar
  123. Trajtenberg M (1990) A penny for your quotes: patent citations and the value of innovations. RAND J Econ 21:172–187CrossRefGoogle Scholar
  124. Unruh GC (2000) Understanding carbon lock-in. Energy Policy 28:817–830CrossRefGoogle Scholar
  125. van Benthem A, Gillingham K, Sweeney JL (2008) Learning-by-doing and the optimal solar policy in California. Energy J 29:131–152Google Scholar
  126. Vossler C (2014) Entwicklung und Reformmöglichkeiten des EEG aus Sicht der neuen politischen Ökonomie. Zeitschrift für Umweltpolitik und -recht 37:198–223Google Scholar
  127. Yeh S, Rubin ES (2012) A review of uncertainties in technology experience curves. Energy Econ 34:762–771CrossRefGoogle Scholar
  128. Zimmerman MB (1982) Learning effects and the commercialization of new energy technologies: the case of nuclear power. Bell J Econ 13:297–310CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Helmholtz Centre for Environmental Research – UFZLeipzigGermany
  2. 2.Economics UnitLuleå University of TechnologyLuleåSweden

Personalised recommendations