Advertisement

Environmental and Resource Economics

, Volume 70, Issue 2, pp 403–427 | Cite as

Optimal Spatial-Dynamic Management of Stochastic Species Invasions

  • Kim Meyer Hall
  • Heidi J. Albers
  • Majid Alkaee Taleghan
  • Thomas G. Dietterich
Article
  • 214 Downloads

Abstract

Recent analyses demonstrate that the spatial–temporal behavior of invasive species requires optimal management decisions over space and time. From a spatial perspective, this bioeconomic optimization model broadens away from invasive species spread at a frontier or to neighbors by examining short and long-distance dispersal, directionality in spread, and network geometry. In terms of uncertainty and dynamics, this framework incorporates several sources of stochasticity, decisions with multi-year implications, and temporal ecological processes. This paper employs a unique Markov decision process planning algorithm and a Monte Carlo simulation of the stochastic system to explore the spatial-dynamic optimal policy for a river network facing a bioinvasion, with Tamarisk as an example. In addition to exploring the spatial, stochastic, and dynamic aspects of management of invasions, the results demonstrate how the interaction of spatial and multi-period processes contributes to finding the optimal policy. Those interactions prove critical in determining the right management tool, in the right location, at the right time, which informs the management implications drawn from simpler frameworks. In particular, as compared to other modeling framework’s policy prescriptions, the framework here finds more use of the management tool restoration and more management in highly connected locations, which leads to a less invaded system over time.

Keywords

Bioeconomic model Bioinvasion Dispersal Invasive species Network Restoration Optimization River Spatial-dynamic processes Stochastic Public bad 

Notes

Acknowledgements

Funding was provided by National Science Foundation (0832804, 1331932).

References

  1. Albers HJ (1996) Modeling ecological constraints on tropical forest management: spatial interdependence, irreversibility, and uncertainty. J Environ Econ Manag 30(1):73–94CrossRefGoogle Scholar
  2. Albers HJ, Goldbach MJ (2000) Irreversible ecosystem change, species competition, and shifting cultivation. Resour Energy Econ 22:261–280CrossRefGoogle Scholar
  3. Burnett K, Kaiser B, Pitafi BA, Roumasset J (2006) Prevention, eradication, and containment of invasive species: illustrations from Hawaii. Agric Resour Econ Rev 35(1):63CrossRefGoogle Scholar
  4. Clopper CJ, Pearson ES (1934) The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika 26(4):404–413CrossRefGoogle Scholar
  5. Chadès I, Martin TG, Nicol S, Burgman MA, Possingham HP, Buckley YM (2011) General rules for managing and surveying networks of pests, diseases, and endangered species. Proc Natl Acad Sci 108(20):8323–8328CrossRefGoogle Scholar
  6. Eiswerth ME, Van Kooten GC (2002) Uncertainty, economics, and the spread of an invasive plant species. Am J Agric Econ 84(5):1317–1322CrossRefGoogle Scholar
  7. Epanchin-Niell RS, Hastings A (2010) Controlling established invaders: integrating economics and spread dynamics to determine optimal management. Ecol Lett 13(4):528–541CrossRefGoogle Scholar
  8. Epanchin-Niell RS, Wilen JE (2012) Optimal spatial control of biological invasions. J Environ Econ Manag 63(2):260–270CrossRefGoogle Scholar
  9. Epanchin-Niell RS, Wilen JE (2015) Individual and cooperative management of invasive species in human-mediated landscapes. Am J Agric Econ 97(1):180–198CrossRefGoogle Scholar
  10. Everitt BL (1998) Chronology of the spread of tamarisk in the central Rio Grande. Wetlands 18(4):658–668CrossRefGoogle Scholar
  11. Fenichel EP, Richards TJ, Shanafelt DW (2014) The control of invasive species on private property with neighbor-to-neighbor spillovers. Environ Resour Econ 59(2):231–255CrossRefGoogle Scholar
  12. Hall K (2014) Optimal spatial-dynamic resource allocation facing uncertainty: integrating economics and ecology for invasive species policy. Dissertation, Oregon State UniversityGoogle Scholar
  13. Hampe A, Petit RJ (2005) Conserving biodiversity under climate change: the rear edge matters. Ecol Lett 8(5):461–467CrossRefGoogle Scholar
  14. Hanski I (1998) Metapopulation dynamics. Nature 396(6706):41–49CrossRefGoogle Scholar
  15. Homans F, Horie T (2011) Optimal detection strategies for an established invasive pest. Ecol Econ 70(6):1129–1138CrossRefGoogle Scholar
  16. Hulme PE (2006) Beyond control: wider implications for the management of biological invasions. J Appl Ecol 43(5):835–847CrossRefGoogle Scholar
  17. Keith DA, Akçakaya HR, Thuiller W, Midgley GF, Pearson RG, Phillips SJ, Regan HM, Araújo MB, Rebelo TG (2008) Predicting extinction risks under climate change: coupling stochastic population models with dynamic bioclimatic habitat models. Biol Lett 4(5):560–563CrossRefGoogle Scholar
  18. Konoshima M, Montgomery CA, Albers HJ, Arthur JL (2008) Spatial-endogenous fire risk and efficient fuel management and timber harvest. Land Econ 84(3):449–468CrossRefGoogle Scholar
  19. Kovacs KF, Haight RG, Mercader RJ, McCullough DG (2014) A bioeconomic analysis of an emerald ash borer invasion of an urban forest with multiple jurisdictions. Resour Energy Econ 36(1):270–289CrossRefGoogle Scholar
  20. Muneepeerakul R, Weitz JS, Levin SA, Rinaldo A, Rodriguez-Iturbe I (2007) A neutral metapopulation model of biodiversity in river networks. J Theor Biol 245(2):351–363CrossRefGoogle Scholar
  21. Olson LJ, Roy S (2002) The economics of controlling a stochastic biological invasion. Am J Agric Econ 84(5):1311–1316CrossRefGoogle Scholar
  22. Sanchirico JN, Albers HJ, Fischer C, Coleman C (2010) Spatial management of invasive species: pathways and policy options. Environ Resour Econ 45(4):517–535CrossRefGoogle Scholar
  23. Schopmeyer CS tech coord (1974) Seeds of woody plants in the United States. Washington DCGoogle Scholar
  24. Sher AA, Marshall DL (2003) Seedling competition between native Populus deltoides (Salicaceae) and exotic Tamarix ramosissima (Tamaricaceae) across water regimes and substrate types. Am J Bot 90(3):413–422CrossRefGoogle Scholar
  25. Sims C, Finnoff D (2012) The role of spatial scale in the timing of uncertain environmental policy. J Econ Dyn Control 36(3):369–382CrossRefGoogle Scholar
  26. Sims C, Aadland D, Powell J, Finnoff DC, Crabb B (2014) Complementarity in the provision of ecosystem services reduces the cost of mitigating amplified natural disturbance events. PNAS 111(47):16718–16723CrossRefGoogle Scholar
  27. Smith MD, Sanchirico JN, Wilen JE (2009) The economics of spatial-dynamic processes: applications to renewable resources. J Environ Econ Manag 57(1):104–121CrossRefGoogle Scholar
  28. Stevens LE (2002) Exotic tamarisk on the Colorado Plateau In: Grahame JD, Sisk TD (eds) Canyons, cultures and environmental change: an introduction to the land-use history of the Colorado Plateau. U.S.Geological SurveyGoogle Scholar
  29. Stromberg J (1998) Dynamics of Fremont cottonwood (Populus fremontii) and saltcedar (Tamarix chinensis) populations along the San Pedro River, Arizona. J Arid Environ 40(2):133–155. doi: 10.1006/jare.1998.0438 CrossRefGoogle Scholar
  30. Sutton RS, Barto AG (1998) Reinforcement learning: an introduction. MIT Press, CambridgeGoogle Scholar
  31. Taleghan MA, Dietterich TG, Crowley M, Hall K, Albers HJ (2015) PAC optimal MDP planning with application to invasive species management. J Mach Learn Res 16:3877–3903Google Scholar
  32. Tamarisk Coalition (2009) Appendix H: Riparian restoration. Assessment of Alternative Technologies for Tamarisk Control, Biomass Reduction, and Revegetation. In: Colorado River Basin Tamarisk and Russian Olive AssessmentGoogle Scholar
  33. Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Hughes L (2004) Extinction risk from climate change. Nature 427(6970):145–148CrossRefGoogle Scholar
  34. Wu J, Skelton-Groth K (2002) Targeting conservation efforts in the presence of threshold effects and ecosystem linkages. Ecol Econ 42(1):313–331CrossRefGoogle Scholar
  35. Wadsworth RA, Collingham YC, Willis SG, Huntley B, Hulme PE (2000) Simulating the spread and management of alien riparian weeds: are they out of control? J Appl Ecol 37(s1):28–38CrossRefGoogle Scholar
  36. Zavaleta E (2000) The economic value of controlling an invasive shrub. AMBIO J Hum Environ 29(8):462–467CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Kim Meyer Hall
    • 1
  • Heidi J. Albers
    • 2
  • Majid Alkaee Taleghan
    • 3
  • Thomas G. Dietterich
    • 3
  1. 1.Department of Forest Ecosystems and SocietyOregon State UniversityCorvallisUSA
  2. 2.Haub School of Environment and Natural Resources, Department of Economics and FinanceUniversity of WyomingLaramieUSA
  3. 3.School of Electrical Engineering and Computer ScienceOregon State UniversityCorvallisUSA

Personalised recommendations