Environmental and Resource Economics

, Volume 67, Issue 4, pp 789–821 | Cite as

Escape from Third-Best: Rating Emissions for Intensity Standards



An increasingly common type of environmental policy instrument regulates the carbon intensity of transportation and electricity markets. In order to extend the policy’s scope beyond point-of-use emissions, regulators assign each potential fuel an emission intensity rating for use in calculating compliance. I show that welfare-maximizing ratings do not generally coincide with the best estimates of actual emissions. In fact, the regulator can achieve a higher level of welfare by properly selecting the emission ratings than possible by selecting only the level of the standard. Moreover, a fuel’s optimal rating can actually decrease when its estimated emission intensity increases. Numerical simulations of the California Low-Carbon Fuel Standard suggest that when recent scientific information increased the estimated emissions from conventional ethanol, regulators should have lowered ethanol’s rating (making it appear less emission-intensive) so that the fuel market would clear with a lower quantity.


Externality Emission Intensity Rating Second-best Ethanol 

JEL Classification

H23 Q42 Q58 


  1. Andress D, Nguyen TD, Das S (2010) Low-carbon fuel standard—status and analytic issues. Energy Policy 38(1):580–591CrossRefGoogle Scholar
  2. Brons M, Nijkamp P, Pels E, Rietveld P (2008) A meta-analysis of the price elasticity of gasoline demand. A SUR approach. Energy Econ 30(5):2105–2122CrossRefGoogle Scholar
  3. Ebert U (1998) Relative standards: a positive and normative analysis. J Econ 67(1):17–38CrossRefGoogle Scholar
  4. Ekvall T, Weidema BP (2004) System boundaries and input data in consequential life cycle inventory analysis. In J Life Cycle Assess 9(3):161–171CrossRefGoogle Scholar
  5. Farrell AE, Sperling D, Brandt AR, Eggert A, Haya BK, Hughes J, Jenkins BM, Jones AD, Kammen DM, Knittel CR, Melaina MW, OHare M, Plevin RJ (2007) A low-carbon fuel standard for California, part 2: policy analysis. Technical report, UC Berkeley and UC DavisGoogle Scholar
  6. Farrell A, Sperling D (2007) Getting the carbon out. San Francisco Chronicle, p B11Google Scholar
  7. Farrell AE, Plevin RJ, Turner BT, Jones AD, O’Hare M, Kammen DM (2006) Ethanol can contribute to energy and environmental goals. Science 311(5760):506–508CrossRefGoogle Scholar
  8. Finnveden G, Hauschild MZ, Ekvall T, Guinée J, Heijungs R, Hellweg S, Koehler A, Pennington D, Suh S (2009) Recent developments in life cycle assessment. J Environ Manag 91(1):1–21CrossRefGoogle Scholar
  9. Fischer C, Newell RG (2008) Environmental and technology policies for climate mitigation. J Environ Econ Manag 55(2):142–162CrossRefGoogle Scholar
  10. Fischer C, Springborn M (2011) Emissions targets and the real business cycle: intensity targets versus caps or taxes. J Environ Econ Manag 62(3):352–366CrossRefGoogle Scholar
  11. Fullerton D, Heutel G (2010) The general equilibrium incidence of environmental mandates. Am Econ J Econ Policy 2(3):64–89CrossRefGoogle Scholar
  12. Gerlagh R, van der Zwaan B (2006) Options and instruments for a deep cut in CO\(_{2}\) emissions: carbon dioxide capture or renewables, taxes or subsidies? Energy J 27(3):25–48CrossRefGoogle Scholar
  13. Goulder LH, Hafstead MAC, Williams III RC (2014) General equilibrium impacts of a federal clean energy standard. Working Paper 19847, National Bureau of Economic ResearchGoogle Scholar
  14. Hatcher A (2007) Firm behaviour under pollution ratio standards with non-compliance. Environ Resour Econ 38(1):89–98CrossRefGoogle Scholar
  15. Helfand GE (1991) Standards versus standards: the effects of different pollution restrictions. Am Econ Rev 81(3):622–634Google Scholar
  16. Holland SP (2009) Taxes and trading versus intensity standards: second-best environmental policies with incomplete regulation (leakage) or market power. Working Paper 15262, NBERGoogle Scholar
  17. Holland SP (2012) Emissions taxes versus intensity standards: second-best environmental policies with incomplete regulation. J Environ Econ Manag 63(3):375–387CrossRefGoogle Scholar
  18. Holland SP, Hughes JE, Knittel CR (2009) Greenhouse gas reductions under low carbon fuel standards? Am Econ J Econ Policy 1(1):106–146CrossRefGoogle Scholar
  19. Hughes JE, Knittel CR, Sperling D (2008) Evidence of a shift in the short-run price elasticity of gasoline demand. Energy J 29(1):113–134CrossRefGoogle Scholar
  20. Kim D, Santomero AM (1988) Risk in banking and capital regulation. J Finance 43(5):1219–1233CrossRefGoogle Scholar
  21. Koehn M, Santomero AM (1980) Regulation of bank capital and portfolio risk. J Finance 35(5):1235–1244CrossRefGoogle Scholar
  22. Lee H, Sumner DA (2010) International trade patterns and policy for ethanol in the United States. In: Khanna M, Scheffran J, Zilberman D (eds) Handbook of bioenergy economics and policy, vol 33. Springer, New York, pp 327–345. doi: 10.1007/978-1-4419-0369-3_19
  23. Lemoine DM, Plevin RJ, Cohn AS, Jones AD, Brandt AR, Vergara SE, Kammen DM (2010) The climate impacts of bioenergy systems depend on market and regulatory policy contexts. Environ Sci Technol 44(19):7347–7350CrossRefGoogle Scholar
  24. Liska AJ, Perrin RK (2009) Indirect land use emissions in the life cycle of biofuels: regulations vs science. Biofuels Bioprod Biorefining 3(3):318–328CrossRefGoogle Scholar
  25. Luchansky MS, Monks J (2009) Supply and demand elasticities in the U.S. ethanol fuel market. Energy Econ 31(3):403–410CrossRefGoogle Scholar
  26. Park SY, Zhao G (2010) An estimation of U.S. gasoline demand: a smooth time-varying cointegration approach. Energy Econ 32(1):110–120CrossRefGoogle Scholar
  27. Parry I, Williams RC III (2012) Moving US climate policy forward: are carbon taxes the only good alternative? In: Hahn RW, Ulph A (eds) Climate change and common sense: essays in honour of Tom Schelling. Oxford University Press, OxfordGoogle Scholar
  28. Plevin RJ, Beckman J, Golub AA, Witcover J, O’Hare M (2015) Carbon accounting and economic model uncertainty of emissions from biofuels-induced land use change. Environ Sci Technol 49(5):2656–2664CrossRefGoogle Scholar
  29. Plevin RJ, Delucchi MA, Creutzig F (2014) Using attributional life cycle assessment to estimate climate-change mitigation benefits misleads policy makers. J Ind Ecol 18(1):73–83CrossRefGoogle Scholar
  30. Plevin RJ, O’Hare M, Jones AD, Torn MS, Gibbs HK (2010) Greenhouse gas emissions from biofuels’ indirect land use change are uncertain but may be much greater than previously estimated. Environ Sci Technol 44(21):8015–8021CrossRefGoogle Scholar
  31. Rochet J-C (1992) Capital requirements and the behaviour of commercial banks. Eur Econ Rev 36(5):1137–1170CrossRefGoogle Scholar
  32. Searchinger T, Ralph Heimlich RA, Houghton FD, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu T-H (2008) Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319(5867):1238–1240CrossRefGoogle Scholar
  33. Yeh S, Sperling D (2010) Low carbon fuel standards: implementation scenarios and challenges. Energy Policy 38(11):6955–6965CrossRefGoogle Scholar
  34. Yeh S, Witcover J, Kessler J (2013) Status review of California’s low carbon fuel standard. Research Report UCD-ITS-RR-13-06. University of California, Davis, Institute of Transportation StudiesGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of EconomicsUniversity of ArizonaTucsonUSA

Personalised recommendations