Environmental and Resource Economics

, Volume 60, Issue 3, pp 433–469 | Cite as

Impacts of Road Expansion on Deforestation and Biological Carbon Loss in the Democratic Republic of Congo

  • Man LiEmail author
  • Alessandro De Pinto
  • John M. Ulimwengu
  • Liangzhi You
  • Richard D. Robertson


This paper develops a nested land use model for the Democratic Republic of the Congo (DRC). The model is capable of systematically representing broad land covers and allocating agricultural area to the country relevant crops. We apply the model to assess the potential environmental impacts of road development in the country. Results indicate that an ongoing plan for road network expansion in the country would cause a reduction of more than 2 % in the existing forest resources, an increase of about 16 % in the current agricultural land, and a total loss of carbon stock estimated to be 316 TgC. The DRC government should consider forest protection a priority as road development is promoted. A plan for agricultural intensification could be safely pursued if coupled with necessary resources to prevent deforestation.


Land use Deforestation Crop allocation Road construction  Greenhouse gas emissions 

JEL Classification

Q15 Q24 Q54 



The authors are indebted to Heidi J. Albers and three anonymous reviewers for their thoughtful comments on earlier versions of this manuscript. The authors gratefully acknowledge the generous funding from the United Stated Agency for International Development in support of this research. This project was conducted under the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS).


  1. Alix-Garcia J, McIntosh C, Sims KRE, Welch JR (2013) The ecological footprint of poverty alleviation: evidence from Mexico’s Oportunidades program. Rev Econ Stat 95(2):417–435CrossRefGoogle Scholar
  2. Andersen LE, Granger CWJ, Reis EJ, Weinhold D, Wunder S (2002) The dynamics of deforestation and economic growth in the Brazilian Amazon. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  3. Angelsen A (1999) Agricultural expansion and deforestation: modeling the impact of population, market forces and property rights. J Dev Econ 58:185–218CrossRefGoogle Scholar
  4. Baccini A, Laporte N, Goetz S, Sun M, Dong H (2008) A first map of tropical Africa’s above-ground biomass derived from satellite imagery. Environ Res Lett 3:1–9CrossRefGoogle Scholar
  5. Barbier E, Burgess J (1997) The economics of tropical forest land use options. Land Econ 73:174–195CrossRefGoogle Scholar
  6. Besag J (1974) Spatial interaction and the statistical analysis of lattice systems. J R Stat Soc B 36:192–225Google Scholar
  7. Bhat C (1997) Covariance heterogeneity in nested logit models: econometric structure and application to intercity travel. Transp Res 31:11–21CrossRefGoogle Scholar
  8. Burney J, Davis S, Lobell D (2010) Greenhouse gas mitigation by agricultural intensification. Proc Natl Acad Sci 107(26):12052–12057CrossRefGoogle Scholar
  9. Busch J, Lubowski RN, Godoy F, Steininger M, Yusuf AA, Austin K, Hewson J, Juhn D, Frid M, Boltz F (2012) Structuring economic incentives to reduce emissions from deforestation within Indonesia. Proc Natl Acad Sci 109(4):1062–1067CrossRefGoogle Scholar
  10. Center for International Earth Science Information Network (CIESIN) Columbia University, International Food Policy Research Institute (IFPRI), The World Bank, Centro Internacional de Agricultura Tropical (CIAT) (2004) Global rural–urban mapping project, version 1 (GRUMPv1): populatin density grid. Socioeconomic Data and Applications Center (SEDAC), Columbia University, Palisades. Accessed 28 Oct 2011
  11. Chomitz K, Gray D (1996) Roads, land use, and deforestation: a spatial model applied to Belize. World Bank Econ Rev 10:487–512CrossRefGoogle Scholar
  12. Chomitz K, Thomas T (2003) Determinants of land use in Amazônia: a fine-scale spatial analysis. Am J Agric Econ 85:1016–1028CrossRefGoogle Scholar
  13. Cropper M, Griffiths C (1994) The interaction of population growth and environmental quality. Am Econo Rev Pap Proc 84:250–254Google Scholar
  14. Cropper M, Griffiths C, Mani M (1999) Roads, population pressures, and deforestation in Tailand, 1976–1989. Land Econ 75(1):58–73CrossRefGoogle Scholar
  15. Cropper M, Puri J, Griffiths C (2001) Predicting the location of deforestation: the role of roads and protected area in North Tailand. Land Econ 77(2):172–186CrossRefGoogle Scholar
  16. Deacon RT (1999) Deforestation and ownership: evidence from historical accounts and contemporary data. Land Econ 75(3):341–359CrossRefGoogle Scholar
  17. De Pinto A, Nelson G (2007) Modeling deforestation and land-use change: sparse data environments. J Agric Econ 58:502–516Google Scholar
  18. De Pinto A, Nelson G (2009) Land use change with spatially explicit data: a dynamic approach. Environ Resour Econ 43:209–229Google Scholar
  19. De Pinto A (2010) Assessing the value of ad-hoc corrections for spatial effects in spatially explicit models of land use. Lett Spat Reg Sci 3:19–31CrossRefGoogle Scholar
  20. Deininger K, Minten B (2002) Determinants of deforestation and the economics of protection: an application to Mexico. Am J Agric Econ 84:943–960CrossRefGoogle Scholar
  21. DGPA (2011) Atlas sur la localisation des Peuples Autochtones (Atlas on the Location of Indigenous Peoples).
  22. Food and Agriculture Organization (FAO) (2010) Global forest resources assessment 2010: main report. FAO of the United Nations, RomeGoogle Scholar
  23. Food and Agriculture Organization (FAO), International Tropical Timber Organization (ITTO) (2011) The state of forests in the Amazon Basin, Congo Basin, and Southeast Asia: a report prepared for the Summit of the Three Rainforest Basin, Brazzaville, Republic of Congo. ISBN:978-92-5-106888-5. FAO of the United Nations, Rome.
  24. Fischer G, Shah M, van Velthuizen H, Nachtergaele F (2001) Global agro-ecological assessment for agriculture in the 21st century. IIASA research report 02-02. International Institute for Applied Systems Analysis, Laxenburg, AustriaGoogle Scholar
  25. Gaston G, Brown S, Lorenzini M, Singh K (1998) State and change in carbon pools in the forests of tropical Africa. Glob Change Biol 4(1):97–114Google Scholar
  26. Gockowski J, Sonwa D (2011) Cocoa intensification scenarios and their predicted impact on \(\text{ CO }_{2}\) emissions, biodiversity conservation, and rural livelihoods in the Guinea rain forest of West Africa. Environ Manag 48:307–321CrossRefGoogle Scholar
  27. Hall P (ed) (1966) Von Thünen’s isolated state: an English edition of Der Isolierte Staat by Johann Heinrich Von Thünen, 1st edn. Pergamon Press, OxfordGoogle Scholar
  28. Hansen MC, Stehman SV, Potapov PV, Loveland TR, Townshend JRG, DeFries RS, Pittman KW, Arunarwati B, Stolle F, Steininger MK, Carroll M, DiMiceli C (2008) Humid tropical forest clearing from 2000 to 2005 quantified by using multitemporal and multiresolution remotely sensed data. Proc Natl Acad Sci 105(27):9439–9444CrossRefGoogle Scholar
  29. Hastings D, Dunbar P (1998) Development and assessment of the global land one-km base elevation model (GLOBE). Int Soc Photogramm Remote Sensi (ISPRS) Arch 32(4):218–221Google Scholar
  30. Hiederer R, Köchy M (2012) Global soil organic carbon estimates and the harmonized world soil database. EUR Scientific and Technical Research series. ISSN:1831-9424 (online), ISSN:1018–5593 (print). ISBN:978-92-79-23108-7. doi: 10.2788/13267
  31. Hijmans R, Cameron S, Parra J, Jones P, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25(15):1965–1978Google Scholar
  32. Houghton R (2005) Tropical deforestation as a source of greenhouse gas emissions. In: Moutinho P, Schwartzman S (eds) Tropical deforestation and climate change. Environmental Defense, Washington DCGoogle Scholar
  33. Institut National des Statistiques (INS) (2010) Prix des produits agricoles. Ministère du Plan, KinshasaGoogle Scholar
  34. IPCC (2006) 2006 IPCC guidelines for national greenhouse gas inventories. Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K (eds) Prepared by the National Greenhouse Gas Inventories Programme. IGES, Japan.
  35. Jackson R, Canadell J, Ehleringer J, Mooney H, Sala O, Schulze E (1996) A global analysis of root distributions for terrestrial biomes. Oecologia 108:389–411CrossRefGoogle Scholar
  36. Joint Research Center (JRC), European Commission (2003) Global Land Cover 2000 Project. Accessed 28 Sept 2010
  37. Kelejian HH, Prucha IR (2001) On the asymptotic distribution of the Moran \(I\) test statistic with applications. J Econom 104:219–257CrossRefGoogle Scholar
  38. Laporte N, Stabach J, Grosch R, Lin T, Goetz S (2007) Expansion of industrial logging in Central Africa. Science 316(8):1451CrossRefGoogle Scholar
  39. Lichtenberg E (1989) Land quality, irrigation development, and cropping patterns in the northern high plains. Am J Agric Econ 71:187–194CrossRefGoogle Scholar
  40. Lubowski RN, Plantinga AJ, Stavins RN (2006) Land-use change and carbon sinks: econometric estimation of the carbon sequestration supply function. J Environ Econ Manag 51(2):135–152CrossRefGoogle Scholar
  41. McFadden DL (1977) Modelling the choice of residential location. 477, Cowles Foundation for Research in Economics, Yale UniversityGoogle Scholar
  42. Miller DJ, Plantinga AJ (1999) Modeling land use decisions with aggregate data. Am J Agricu Econ 81:180–194CrossRefGoogle Scholar
  43. Minten B, Kyle S (1999) The effect of distance and road quality on food collection, marketing margins, and traders’ wages: evidence from the former Zaire. J Dev Econ 60:467–495CrossRefGoogle Scholar
  44. Munroe D, Southworth J, Tucker C (2004) Modeling spatially and temporally complex land cover change: the case of Western Honduras. Prof Geogr 56:544–559Google Scholar
  45. Nelson A (2008) Global 1 km accessibility (CostDistance) model using publicly available data. World Bank, Washington, DCGoogle Scholar
  46. Nelson G, Hellerstein D (1997) Do roads cause deforestation? Using satellite images in econometric analysis of land use. Am J Agric Econ 79:80–88CrossRefGoogle Scholar
  47. Nelson G, Harris V, Stone S (2001) Deforestation, land use, and property rights: Empirical evidence from Darién, Panama. Land Econ 77(2):187–205CrossRefGoogle Scholar
  48. Pfaff A (1999) What drives deforestation in the Brazilian Amazon? J Environ Econ Manag 37:26–43CrossRefGoogle Scholar
  49. Pfaff A, Robalino J, Walker R, Aldrich S, Caldas M, Reis E, Perz S, Bohrer C, Arima E, Laurance W, Kirby K (2007) Road investments, spatial spillovers, and deforestation in the Brazilian Amazon. J Reg Sci 47(1):109–123CrossRefGoogle Scholar
  50. Ravallion M, Chen S, Sangraula P (2009) Dollar a day. World Bank Econ Rev 23(2):163–184CrossRefGoogle Scholar
  51. Rodrigues A, Ewers R, Parry L, Souza C Jr, Verissimo A, Balmford A (2009) Boom-and-bust development patterns across the Amazon deforestation frontier. Science 324:1435CrossRefGoogle Scholar
  52. Service National de Statistiques Agricoles (SNSA) (2010) Superficies cultivées. Ministère de l’Agriculture, KinshasaGoogle Scholar
  53. Seto K, Kaufmann R (2003) Modeling the drivers of urban land use change in the Pearl River Delta, China: integrating remote sensing with socioeconomic data. Land Econ 79:106–121CrossRefGoogle Scholar
  54. Schatzki T (2003) Options, uncertainty, and sunk costs: an empirical analysis of land use change. J Environ Econ Manag 46:86–105CrossRefGoogle Scholar
  55. Shively GE (2001) Agricultural change, rural labor markets, and forest clearing: an illustrative case from the Philippines. Land Econ 77(2):268–284CrossRefGoogle Scholar
  56. Steckel J, Vanhonacker W (1988) A heterogeneous conditional logit model of choice. J Bus Econ Stat 6:391–398Google Scholar
  57. Train K (2003) Discret Choice Methods Simul. Cambirdge University Press, New YorkCrossRefGoogle Scholar
  58. Ulimwegu J, Funes J, Headey D, Yong L (2009) Paving the way for development? Impact of transport infrastructure on agricultural production and poverty reduction in the Democratic Republic of Congo. IFPRI discussion paper 00944. International Food Policy Research Institute, Washington, DCGoogle Scholar
  59. Van Wagtendonk JW, Benedict JM (1980) Travel time variation on backcountry trails. J Leis Res 12:99–106Google Scholar
  60. Weinhold D, Reis E (2008) Transportation costs and the spatial distribution of land use in the Brazilian Amazon. Glob Environ Change 18:54–68CrossRefGoogle Scholar
  61. World Resources Institute, Ministry of Environment, Nature Conservation, and Tourism of the Democratic Republic of Congo (2010) Interactive forestry atlas of the democratic Republic of Congo [CD-ROM 1.0]. World Resources Institute, Washington, DC. ISBN:978-1-56973-758-3Google Scholar
  62. Wu J, Babcock BA (1998) The choice of tillage, rotation, and soil testing practices: economic and environmental implications. Am J Agric Econ 80:494–511CrossRefGoogle Scholar
  63. Wu J, Adams RM, Kling CL, Tanaka K (2004) From microlevel decisions to landscape changes: an assessment of agricultural conservation policies. Am J Agric Econ 86:26–41Google Scholar
  64. Yohe GW, Lasco RD, Ahmad QK, Arnell NW, Cohen SJ, Hope C, Janetos AC, Perez RT (2007) Perspectives on climate change and sustainability. In: Parry ML Canziani OF, Palutikof JP, van der Linden PJ, CE Hanson (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp. 811–841. Retrieved 2011-10-12Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Man Li
    • 1
    Email author
  • Alessandro De Pinto
    • 1
  • John M. Ulimwengu
    • 1
  • Liangzhi You
    • 1
  • Richard D. Robertson
    • 1
  1. 1.International Food Policy Research Institute (IFPRI)WashingtonUSA

Personalised recommendations