Environmental and Resource Economics

, Volume 57, Issue 4, pp 505–525

Modeling Impact of Development Trajectories and a Global Agreement on Reducing Emissions from Deforestation on Congo Basin Forests by 2030

  • A. Mosnier
  • P. Havlík
  • M. Obersteiner
  • K. Aoki
  • E. Schmid
  • S. Fritz
  • I. McCallum
  • S. Leduc
Article

Abstract

The Congo Basin encompasses the second largest rainforest area after the Amazon but the Congo Basin rainforest has been more preserved during the last decades with a much lower deforestation rate. At the same time, the region remains one of the least developed in the world. We use the partial equilibrium model GLOBIOM for the global agricultural, forestry and bioenergy sectors that seeks to find optimal land use options by spatially representing land qualities. We show the trade-offs between achieving agricultural growth at the expense of forests and protecting forests at the expense of agriculture development in the Congo Basin. The realization of the transportation infrastructures, which are already planned and funded, could multiply deforestation by three. In contrast, a global agreement on reduction of total emissions from deforestation could achieve important cuts in GHG emissions from deforestation in the Congo Basin. However, it could lead to substantial increases in food imports and food prices, which are in contradiction with the food security objectives.

Keywords

Congo Basin Deforestation Infrastructures Land use change  Partial equilibrium model REDD+ 

Abbreviation

AICD

African Infrastructure Country Database

CAR

Central African Republic

\(\text{ CO}_{2}\)

Carbon dioxyde

CO\(_2\)e

Carbon dioxyde equivalent

DRC

Democratic Republic of Congo

EPIC

Environmental Policy Integrated Climate model

FAO

Food and Agriculture Organization

FRA

Forest Resources Assessment

G4M

Global forest model

GHG

Greenhouse gas

GLOBIOM

GLObal BIOsphere Management model

GT

Giga tonne

IPCC

Intergovernmental Panel on Climate Change

Mha

Million hectares

OFAC

Observatory for the Forests of Central Africa

REDD+

Reducing Emissions from Deforestation and forest Degradation in developing countries

References

  1. Ahrends A, Burgess ND, Milledge S, Bulling MT, Fisher B, Smart J, Clarke P, Mhoro B, Lewis SL (2010) Predictable waves of sequential forest degradation and biodiversity loss spreading from an African city. PNAS print August 2, 2010. doi:10.1073/pnas.0914471107
  2. Alexandratos N, Bruinsma J, Boedeker G, Schmidhuber J, Broca S, Shetty P, Ottaviani M (2006) World agriculture: towards 2030/2050. Interim report. Prospects for food, nutrition, agriculture and major commodity groups. Global Perspective Studies Unit, FAO, RomeGoogle Scholar
  3. Angelsen A (2010) Policies for reduced deforestation and their impact on agricultural production. Proc Natl Acad Sci US 107(46):19639–19644CrossRefGoogle Scholar
  4. Angelsen A, Brockhaus M, Kanninen M, Sills E, Sunderlin WD, Wertz-Kanounnikoff S (eds) (2009) Realising REDD+. National strategy and policy options. CIFOR, BogorGoogle Scholar
  5. Angelsen A, Kaimowitz D (1999) Rethinking the causes of deforestation: lessons from economic models. World Bank Res Obs 14(1):73–98CrossRefGoogle Scholar
  6. Cerruti PO, Tacconi L (2008) Forests, illegality and livelihoods: the case of Cameroon. Soc Nat Resour Int J 21(9):845–853. doi:10.1080/08941920801922042 CrossRefGoogle Scholar
  7. Cerruti PO, Tacconi L, Nasi R, Lescuyer G (2011) Legal vs. certified timber: preliminary impacts of forest certification in Cameroon. For Policy Econ 13(3):184–190CrossRefGoogle Scholar
  8. Duguma B, Gockowski J, Bakala J (2001) Smallholder cocoa cultivation in agroforestry systems of West and Central Africa: challenges and opportunities. Agrofor Syst 51:177–188Google Scholar
  9. Duveiller G, Defourny P, Desclee B, Mayaux P (2008) Deforestation in Central Africa: estimates at regional, national and landscape levels by advanced processing of systematically-distributed Landsat extracts. Remote Sens Environ 112(5):1969–1981CrossRefGoogle Scholar
  10. Eba’a Atyi R, Devers D, de Wasseige C, Maisels F (2008) State of the forests of Central Africa: regional synthesis. In: de Wasseige C et al (ed) The forests of the Congo Basin—State of the forest 2008. Publications Office of the European Union, Luxembourg, p 276, ISBN:978-92-79-22716-5. doi:10.2788/32259
  11. Ernst C, Verheggen A, Mayaux P, Hansen M, Defourny P (2012) Central African forest cover and Forest cover change mapping. In: de Wasseige C et al (ed) The forests of the Congo Basin—State of the Forest 2010. Publications Office of the European Union, Luxembourg, p 276, ISBN: 978-92-79-22716-5. doi:10.2788/47210
  12. Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008) Land clearing and the biofuel carbon debt. Science 319(5867):1235CrossRefGoogle Scholar
  13. Food and agriculture organization of the United Nations (2011) The state of forests in the Amazon Basin, Congo Basin and Southeast Asia. A report prepared for the summit of the three rainforest basins, Brazzaville, Republic of Congo, 31 May-3, June 2011Google Scholar
  14. Food and Agriculture Organization of the United Nations (2010) Global forest resources assessment 2010. Progress towards sustainable forest management, Rome, ItalyGoogle Scholar
  15. Freitas S, Hawbacker T, Metzger JP (2009) Effects of roads, topography, and land use on forest cover dynamics in the Brazilian Atlantic forest. For Ecol Manag 259(3):410–417CrossRefGoogle Scholar
  16. Geist H, Lambin E (2002) Proximate causes and underlying driving forces of tropical deforestation. BioScience 52(2):143–150CrossRefGoogle Scholar
  17. Gockowski J, Tonye J, Diaw C, Hauser S, Kotto-Same J, Njomgang R, Moukam A, Nwaga D, Tiki-Manga T, Tondoh J, Tschondeau Z, Weise S, Zapfack L (2005) The forest margins of Cameroon. In: Palm CA et al (eds) Slash-and- burn agriculture, the search for alternatives. Columbia University Press, New YorkGoogle Scholar
  18. Grübler A, O’Neill B, Riahi K, Chirkov V, Goujon A, Kolp P, Prommer I, Scherbov S, Slentoe E (2007) Regional, national, and spatially explicit scenarios of demographic and economic change based on SRES. Technol Forecast Soc Chang 74:980–1027CrossRefGoogle Scholar
  19. Havlík P, Schneider UA, Schmid E, Boettcher H, Fritz S, Skalský R, Aoki K, de Cara S, Kindermann G, Kraxner F, Leduc S, McCallum I, Mosnier A, Sauer T, Obersteiner M (2011) Global land-use implications of first and second generation biofuel targets. Energy Policy 39(10):5690–5702CrossRefGoogle Scholar
  20. Holloway V, Giandomenico E (2009) The history of REDD policy. Carbon Planet White paper, Adelaide, AustraliaGoogle Scholar
  21. Izaurralde RC, Williams JR, McGill WB, Rosenberg NJ, Jakas MCQ (2006) Simulating soil C dynamics with EPIC: model description and testing against long-term data. Ecol Model 192:362–384CrossRefGoogle Scholar
  22. Jagoret P, Ngogue HT, Bouambi E, Battini JL, Nyasse S (2009) Diversification des exploitations agricoles a base de cacaoyer au Centre Cameroun: mythe ou réalité? Biotechnol. Agron. Soc. Environ. 13(2):271–280Google Scholar
  23. Juma C (ed) (2011) The new harvest-agricultural innovation in Africa. Oxford University Press, OxfordGoogle Scholar
  24. Karsenty A, Gourlet-Fleury S (2006) Assessing sustainability of logging practices in the Congo Basin’s managed forests: the issue of commercial species recovery. Ecol Soc 11(1):26Google Scholar
  25. Kasulu SMV, Armathe AJ, Hamel O et al (2008) Les pays du Bassin du Congo dans le processus de réduction des émissions liées à la déforestation et à la dégradation des forêts (REDD). In: de Wasseige C (ed) The forests of the Congo Basin—State of the forets 2008. Publications Office of the European Union, Luxembourg. doi:10.2788/32259
  26. Kindermann G, Obersteiner M, Rametsteiner E, McCallum I (2006) Predicting the deforestation-trend under different carbon-prices. Carbon Balance Manag 1:15CrossRefGoogle Scholar
  27. Kindermann G, Obersteiner M, Rametsteiner E, McCallum I (2008a) A global forest growing stock biomass and carbon map based on FAO statistics. Silva Fennica 42(3):387–396CrossRefGoogle Scholar
  28. Kindermann G, Obersteiner M, Sohngen B, Sathaye J, Andrasko K, Rametsteiner E, Schlamadinger B, Wunder S, Beach R (2008b) Global cost estimates of reducing carbon emissions through avoided deforestation. Proc Natl Acad Sci US Am 105(30):10302–10307CrossRefGoogle Scholar
  29. Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World map of the Köppen-Geiger climate classification updated. Meteorol Zeitschrift 15(3):259–263CrossRefGoogle Scholar
  30. Magnagna Nguema V (ed) (2005) L’agriculture au Gabon. Editions KarthalaGoogle Scholar
  31. Marien JN (2008) Forêts périurbaines et bois énergie: quels enjeux pour l’Afrique centrale? In: de Wasseige C (ed) The forests of the Congo Basin—State of the forets 2008. Publications Office of the European Union, Luxembourg. doi:10.2788/32259
  32. Mather (1992) The forest transition. Area 24(4):367–379Google Scholar
  33. McAlpine CA, Etter A, Fearnside PM, Seabrook L, Laurance WF (2009) Increasing world consumption of beef as a driver of regional and global change: a call for policy action based on evidence from Queensland (Australia), Colombia and BrazilGoogle Scholar
  34. McCarl B, Spreen T (1980) Price endogenous mathematical programming as a tool for sector analysis. Am J Agric Econ 62:87–110CrossRefGoogle Scholar
  35. McKinsey and Company (2009) The democratic Republic of Congo’s REDD+ Potential. Nature conservation and tourism of the democratic Republic of Congo, Ministry of EnvironmentGoogle Scholar
  36. Mertens B, Steil M, Ayenika Nsoyuni L, Neba Shu G, Minnemeyer S (2007) Interactive forestry atlas of Cameroon, version 2.0. World Resources Institute ReportGoogle Scholar
  37. Meyfroidt P, Lambin EF (2009) Forest transition in Vietnam and displacement of deforestation abroad. Proceedings of the National Academy of Sciences of the United States of America doi. doi:10.1073/pnas.0904942106
  38. Minten B, Kyle S (1999) The effect of distance and road quality on food collection, marketing margins and traders’ wages: evidence from the former Zaire. J Dev Econ 60(2):467–495CrossRefGoogle Scholar
  39. Nasi R, Mayaux P, Devers D, Bayol N, Eba’a Atyi R, Mugnier A, Cassagne B, Billand A, Sonwa D (2008) A first look at carbon stocks and their variation in Congo basin forests. In: de Wasseige C et al. (ed) The forests of the Congo Basin—State of the forests 2008. Publications Office of the European Union, Luxembourg. doi:10.2788/32259
  40. Ndoye O, Kaimowitz D (2000) Macro-economics, markets and the humid forests of Cameroon. J Mod Afr Stud 38(2):225–253CrossRefGoogle Scholar
  41. Nelson A (2006) Market accessibility Surfaces for Africa. LAC and Asia. Unpublished data, Joint Research CenterGoogle Scholar
  42. Nepstad DC, Stickler CM, Almeida OT (2006) Globalization of the Amazon Soy and beef industries: opportunities for conservation. Conserv Biol 20:65–73CrossRefGoogle Scholar
  43. Persson MU (2012) Conserve or convert? Pan-tropical modeling of REDD-bioenergy competition. Biol Conserv 146(1):81–88CrossRefGoogle Scholar
  44. Perz SG (2007) Grand theory and context-specificity in the study of forest dynamics: forest transition theory and other directions. Prof Geogr 59(1):105–114CrossRefGoogle Scholar
  45. Pfaff A (1999) What drives deforestation in the Brazilian Amazon? Evidence from satellite and socioeconomic data. J Environ Econ Manag 37:26–43CrossRefGoogle Scholar
  46. Ruesch A, Gibbs HK (2008) New IPCC Tier-1 global biomass carbon map for the year 2000. Available online from the carbon dioxide information analysis center http://cdiac.ornl.gov. Oak Ridge National Laboratory. Oak Ridge, Tennessee
  47. Ruiz Pérez M, de Blas DE, Nasi R, Sayear JA, Sassen M, Angoué C, Gami N, Ndoye O, Ngono G, Nguiguiri JC, Nzala D, Toirambe B, Yalibanda Y (2005) Logging in the Congo Basin: a multi-country characterization of timber companies. For Ecol Manag 214:221–236CrossRefGoogle Scholar
  48. Russ P, Wiesenthal T, van Regenmorter D, Císcar JC (2007) Global climate policy scenarios for 2030 and beyond: analysis of greenhouse gas emission reduction pathway scenarios with the POLES and GEM-E3 models. JRC Reference Reports. Joint Research Centre-Institute for Prospective Technological Studies. Seville, Spain, http://ipts.jrc.ec.europa.eu
  49. Santilli M, Moutinho P, Schwartzman S, Nepstad D, Curran L, Nobre C (2005) Tropical deforestation and the Kyoto Protocol: an editorial essay. Clim Chang 71:267–276CrossRefGoogle Scholar
  50. Sauer T, Havlík P, Schneider UA, Schmid E, Kindermann G, Obersteiner M (2010) Agriculture and resource availability in a changing world: the role of irrigation. Water Resour Res 46. doi:10.1029/2009WR007729
  51. Schneider UA, Havlík P, Schmid E, Valin H, Mosnier A, Obersteiner M, Böttcher H, Skalsky R, Balkovič J, Sauer T, Fritz S (2011) Impacts of population growth, economic development and technical change on global food production and consumption. Agric Syst 104:204–215CrossRefGoogle Scholar
  52. Schure J, Ingram V, Akalakou-Mayimba C (2011) Bois energie en RDC: analyse de la filiere, approvisionnement des villes de Kinshasa et de Kisangani. Projet Makala/CIFOR, YaoundeGoogle Scholar
  53. Searchinger T, Heimlich R, Houghton R, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu T (2008) Use of US croplands for biofuels increases greenhouse gases through emissions from land use change. Science 319(5867):1238–1240CrossRefGoogle Scholar
  54. Skalsky R, Tarasovicova Z, Balkovic J, Schmid E, Fuchs M, Moltchanova E, Kinderman G, Scholtz P et al (2008) GEO-BENE global database for bio-physical modeling v. 1.0-concepts, methodologies and data. International Institute for Applied Analysis (IIASA), LaxenburgGoogle Scholar
  55. Teravaninthorn S, Raballand G (eds) (2009) Transport prices and costs in Africa: a review of the main international corridors. World Bank, WashingtonGoogle Scholar
  56. Tomich TP, Cattaneo A, Chater S, Geist HJ, Gockowski J, Kaimowitz D, Lambin EF, Lewis J, Ndoye O, Palm C, Stolle F, Sunderlin W, Valentim J, van Noordwijk M, Vosti S (2008) Balancing agricultural development and environmental objectives: assessing tradeoffs in the humid tropics. In: Pal et al (eds) Slash and burn: the search for alternatives. Columbia University Press, New YorkGoogle Scholar
  57. Van der Werf GR, Morton DC, DeFries RS, Olivier JGJ, Kasibhatla PS, Jackson RB, Collatz GJ, Randerson JT (2009) CO\(_2\) emissions from forest loss. Nat Geosci 2:737–738Google Scholar
  58. Williams JR (1995) The EPIC model. In: Singh VP (ed) Computer models of watershed hydrology. Water Resources publications, Highlands RanchGoogle Scholar
  59. You L, Wood S (2006) An entropy approach to spatial disaggregation of agricultural production. Agric Syst 90:329–347CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • A. Mosnier
    • 1
    • 2
  • P. Havlík
    • 1
  • M. Obersteiner
    • 1
  • K. Aoki
    • 3
  • E. Schmid
    • 2
  • S. Fritz
    • 1
  • I. McCallum
    • 1
  • S. Leduc
    • 1
  1. 1.Ecosystems Services and Management ProgramInternational Institute for Applied Systems Analysis (IIASA)LaxenburgAustria
  2. 2.University of Natural Resources and Applied Life SciencesViennaAustria
  3. 3.United Nations Industrial Development Organization (UNIDO)ViennaAustria

Personalised recommendations