Environmental and Resource Economics

, Volume 43, Issue 3, pp 313–332 | Cite as

A Ricardian Analysis of the Distribution of Climate Change Impacts on Agriculture across Agro-Ecological Zones in Africa

  • S. Niggol Seo
  • Robert Mendelsohn
  • Ariel Dinar
  • Rashid Hassan
  • Pradeep Kurukulasuriya


This paper examines the distribution of climate change impacts across the sixteen Agro-Ecological Zones (AEZs) of Africa. We combine net revenue from livestock and crops and regress total net revenue on a set of climate, soil, and socio-economic variables with and without country fixed effects. Although African crop net revenue is very sensitive to climate change, combined livestock and crop net revenue is more climate resilient. With the hot and dry CCC climate scenario, average damage estimates reach 27% by 2100, but with the mild and wet PCM scenario, African farmers will benefit. The analysis of AEZs implies that the effects of climate change will be quite different across Africa. For example, currently productive areas such as dry/moist savannah are more vulnerable to climate change while currently less productive agricultural zones such as humid forest or sub-humid AEZs become more productive in the future.


Climate change Economic impacts Agriculture Africa AEZ 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Basist A, Peterson N, Peterson T, Williams C (1998) Using the Special Sensor Microwave Imager to monitor land surface temperature, wetness, and snow cover. J Appl Meteorol 37: 888–911. doi: 10.1175/1520-0450(1998)037<0888:UTSSMI>2.0.CO;2 CrossRefGoogle Scholar
  2. Boer G, Flato G, Ramsden D (2000) A transient climate change simulation with greenhouse gas and aerosol forcing: projected climate for the 21st century. Clim Dyn 16: 427–450. doi: 10.1007/s003820050338 CrossRefGoogle Scholar
  3. Dinar A, Hassan R, Mendelsohn R, Benhin J (eds) (2008) Climate change and agriculture in Africa: impact assessment and adaptation strategies. EarthScan, London, p189Google Scholar
  4. FAO (1978) Report on Agro-Ecological Zones; vol 1: methodology and results for africa. RomeGoogle Scholar
  5. Fischer G, van Velthuizen H (1996) Climate change and global agricultural potential: a case of Kenya. IIASA Working Paper WP-96-071Google Scholar
  6. Food and Agriculture Organization (2003) The Digital Soil Map of the World (DSMW) CD-ROM. Italy, Rome. Available in http://www.fao.org/AG/agl/agll/dsmw.stm Accessed March 2004
  7. IntergovernmentalPanelonClimate Change (IPCC) (2000) Special report on emissions scenarios. Cambridge University Press, Cambridge, UKGoogle Scholar
  8. Intergovernmental Panel on Climate Change (IPCC) (2007a) The physical science basis. Fourth Assessment Report, Cambridge University Press, Cambridge, UKGoogle Scholar
  9. Intergovernmental Panel on Climate Change (IPCC) (2007b) Impacts, adaptations, and vulnerability. Fourth Assessment Report, Cambridge University Press, Cambridge, UKGoogle Scholar
  10. Kelly DL, Kolstad CD, Mitchell G (2005) Adjustment costs from environmental change J Environ Econ Manag 50: 468–495Google Scholar
  11. Kurukulasuriya P, Mendelsohn R (2008) A Ricardian analysis of the impact of climate change on African cropland. Afr J Agric Resour Econ 2: 1–23Google Scholar
  12. Kurukulasuriya P, Mendelsohn R, Hassan R, Benhin J, Diop M, Eid HM, Fosu KY, Gbetibouo G, Jain S, Mahamadou A, El-Marsafawy S, Ouda S, Ouedraogo M, Sène I, Maddision D, Seo N, Dinar A (2006) Will African agriculture survive climate change. World Bank Econ Rev 20: 367–388. doi: 10.1093/wber/lhl004 CrossRefGoogle Scholar
  13. Mendelsohn R, Nordhaus W (1996) The impact of global warming on agriculture: reply. Am Econ Rev 86: 1312–1315Google Scholar
  14. Mendelsohn R, Nordhaus W, Shaw D (1994) The impact of global warming on agriculture: a Ricardian analysis. Am Econ Rev 84: 753–771Google Scholar
  15. Mendelsohn R, Dinar A, Williams L (2006) The distributional impact of climate change on rich and poor countries. Environ Dev Econ 11: 1–20. doi: 10.1017/S1355770X05002755 CrossRefGoogle Scholar
  16. Mendelsohn R, Kurukulasuriya P, Basist A, Kogan F, Williams C (2007) Measuring climate change impacts with satellite versus weather station data. Clim Change 81: 71–83. doi: 10.1007/s10584-006-9139-x CrossRefGoogle Scholar
  17. Nordhaus W (2007) To tax or not to tax: alternative approaches to slow global warming. Rev Environ Econ Policy 1: 22–44CrossRefGoogle Scholar
  18. Pearce D et al (1996) The social costs of climate change: greenhouse damage and benefits of control. In: Bruce J, Lee H, Haites E (eds) Climate change 1995: economic and social dimensions of climate change. Cambridge University Press, Cambridge, UK, pp 179–224Google Scholar
  19. Reilly J, Baethgen W, Chege F, van deGeijn S, Erda L, Iglesias A, Kenny G, Patterson D, Rogasik J, Rotter R, Rosenzweig C, Somboek W, Westbrook J (1996) Agriculture in a changing climate: impacts and adaptations. In: Watson R, Zinyowera M, Moss R, Dokken D (eds) Climate change 1995: intergovernmental panel on climate change impacts, adaptations, and mitigation of climate change. Cambridge University Press, Cambridge, UKGoogle Scholar
  20. Rosenzweig C, Parry M (1994) Potential impact of climate change on world food supply. Nature 367: 133–138. doi: 10.1038/367133a0 CrossRefGoogle Scholar
  21. Seo SN, Mendelsohn R (2008a) A Ricardian analysis of the impact of climate change on South American farms. Chil J Agri Res 68: 69–79Google Scholar
  22. Seo SN, Mendelsohn R (2008b) Animal husbandry in Africa: climate change impacts and adaptations. Afr J Agric Resour Econ 2: 65–82Google Scholar
  23. Seo SN, Mendelsohn R (2008c) Measuring impacts and adaptations to climate change: a structural Ricardian model of African livestock management. Agric Econ 38: 151–165Google Scholar
  24. Strzepek K, McCluskey A (2006) District level hydroclimatic time series and scenario analyses to assess the impacts of climate change on regional water resources and agriculture in Africa. CEEPA Discussion Paper No. 13, Centre for Environmental Economics and Policy in Africa, University of PretoriaGoogle Scholar
  25. Tol R (2002) Estimates of the damage costs of climate change. Part 1: benchmark estimates. Environ Resour Econ 21: 47–73. doi: 10.1023/A:1014500930521 CrossRefGoogle Scholar
  26. USGS (United States Geological Survey) (2004) Global 30 arc second elevation data, USGS National Mapping Division, EROS Data Centre. http://edcdaac.usgs.gov/gtopo30/gtopo30.asp
  27. Voortman R, Sonnedfeld B, Langeweld J, Fischer G, Van Veldhuizen H (1999) Climate change and global agricultural potential: a case of Nigeria. Centre for World Food Studies. Vrije Universiteit, AmsterdamGoogle Scholar
  28. Washington W et al (2000) Parallel climate model (PCM): control and transient scenarios. Clim Dyn 16: 755–774CrossRefGoogle Scholar
  29. World Bank (2003) Africa Rainfall and Temperature Evaluation System (ARTES). World Bank, Washington DCGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • S. Niggol Seo
    • 1
    • 2
  • Robert Mendelsohn
    • 3
  • Ariel Dinar
    • 4
    • 5
  • Rashid Hassan
    • 6
    • 7
  • Pradeep Kurukulasuriya
    • 8
  1. 1.Basque Center for Climate ChangeBilbaoSpain
  2. 2.Research consultant to the World Bank; Research AssociateYale UniversityBilbaoSpain
  3. 3.School of Forestry and Environmental StudiesYale UniversityNew HavenUSA
  4. 4.Department of Environmental Sciences and Water Science and Policy CenterUniversity of CaliforniaRiversideUSA
  5. 5.Development Economics Research GroupWorld BankWashingtonUSA
  6. 6.Department of Agricultural EconomicsUniversity of PretoriaPretoriaSouth Africa
  7. 7.Center for Environmental Economics for AfricaUniversity of PretoriaPretoriaSouth Africa
  8. 8.Energy and Environment Group, Bureau of Development PolicyUnited Nations Development ProgrammeNew YorkUSA

Personalised recommendations